Source code for pennylane.ops.op_math.adjoint_constructor

# Copyright 2018-2022 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
This submodule applies the symbolic operation that indicates the adjoint of an operator through the `adjoint` transform.
from functools import wraps

from pennylane.operation import Operator
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumTape

from .adjoint_class import Adjoint

def _single_op_eager(op, update_queue=False):
    if op.has_adjoint:
        adj = op.adjoint()
        if update_queue:
            QueuingManager.update_info(op, owner=adj)
            QueuingManager.append(adj, owns=op)
        return adj
    return Adjoint(op)

# pylint: disable=no-member
[docs]def adjoint(fn, lazy=True): """Create the adjoint of an Operator or a function that applies the adjoint of the provided function. Args: fn (function or :class:`~.operation.Operator`): A single operator or a quantum function that applies quantum operations. Keyword Args: lazy=True (bool): If the transform is behaving lazily, all operations are wrapped in a ``Adjoint`` class and handled later. If ``lazy=False``, operation-specific adjoint decompositions are first attempted. Returns: (function or :class:`~.operation.Operator`): If an Operator is provided, returns an Operator that is the adjoint. If a function is provided, returns a function with the same call signature that returns the Adjoint of the provided function. .. note:: The adjoint and inverse are identical for unitary gates, but not in general. For example, quantum channels and observables may have different adjoint and inverse operators. .. seealso:: :class:`~.ops.op_math.Adjoint` and :meth:`.Operator.adjoint` **Example** The adjoint transform can accept a single operator. >>> @qml.qnode(qml.device('default.qubit', wires=1)) ... def circuit2(y): ... qml.adjoint(qml.RY(y, wires=0)) ... return qml.expval(qml.PauliZ(0)) >>> print(qml.draw(circuit2)("y")) 0: ──RY(y)†─┤ <Z> >>> print(qml.draw(circuit2, expansion_strategy="device")(0.1)) 0: ──RY(-0.10)─┤ <Z> The adjoint transforms can also be used to apply the adjoint of any quantum function. In this case, ``adjoint`` accepts a single function and returns a function with the same call signature. We can create a QNode that applies the ``my_ops`` function followed by its adjoint: .. code-block:: python3 def my_ops(a, wire): qml.RX(a, wires=wire) qml.SX(wire) dev = qml.device('default.qubit', wires=1) @qml.qnode(dev) def circuit(a): my_ops(a, wire=0) qml.adjoint(my_ops)(a, wire=0) return qml.expval(qml.PauliZ(0)) Printing this out, we can see that the inverse quantum function has indeed been applied: >>> print(qml.draw(circuit)(0.2)) 0: ──RX(0.20)──SX──SX†──RX(0.20)†─┤ <Z> .. details:: :title: Lazy Evaluation When ``lazy=False``, the function first attempts operation-specific decomposition of the adjoint via the :meth:`.Operator.adjoint` method. Only if an Operator doesn't have an :meth:`.Operator.adjoint` method is the object wrapped with the :class:`~.ops.op_math.Adjoint` wrapper class. >>> qml.adjoint(qml.PauliZ(0), lazy=False) PauliZ(wires=[0]) >>> qml.adjoint(qml.RX, lazy=False)(1.0, wires=0) RX(-1.0, wires=[0]) >>> qml.adjoint(qml.S, lazy=False)(0) Adjoint(S)(wires=[0]) """ if isinstance(fn, Operator): return Adjoint(fn) if lazy else _single_op_eager(fn, update_queue=True) if not callable(fn): raise ValueError( f"The object {fn} of type {type(fn)} is not callable. " "This error might occur if you apply adjoint to a list " "of operations instead of a function or template." ) @wraps(fn) def wrapper(*args, **kwargs): with QueuingManager.stop_recording(), QuantumTape() as tape: fn(*args, **kwargs) if lazy: adjoint_ops = [Adjoint(op) for op in reversed(tape.operations)] else: adjoint_ops = [_single_op_eager(op) for op in reversed(tape.operations)] return adjoint_ops[0] if len(adjoint_ops) == 1 else adjoint_ops return wrapper