Source code for pennylane.interfaces.autograd

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains functions for adding the Autograd interface
to a PennyLane Device class.
"""
# pylint: disable=too-many-arguments
import logging
import inspect

import autograd
from autograd.numpy.numpy_boxes import ArrayBox

import pennylane as qml


logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


[docs]def execute(tapes, device, execute_fn, gradient_fn, gradient_kwargs, _n=1, max_diff=2): """Execute a batch of tapes with Autograd parameters on a device. Args: tapes (Sequence[.QuantumTape]): batch of tapes to execute device (pennylane.Device): Device to use to execute the batch of tapes. If the device does not provide a ``batch_execute`` method, by default the tapes will be executed in serial. execute_fn (callable): The execution function used to execute the tapes during the forward pass. This function must return a tuple ``(results, jacobians)``. If ``jacobians`` is an empty list, then ``gradient_fn`` is used to compute the gradients during the backwards pass. gradient_kwargs (dict): dictionary of keyword arguments to pass when determining the gradients of tapes gradient_fn (callable): the gradient function to use to compute quantum gradients _n (int): a positive integer used to track nesting of derivatives, for example if the nth-order derivative is requested. max_diff (int): If ``gradient_fn`` is a gradient transform, this option specifies the maximum order of derivatives to support. Increasing this value allows for higher order derivatives to be extracted, at the cost of additional (classical) computational overhead during the backwards pass. Returns: list[list[float]]: A nested list of tape results. Each element in the returned list corresponds in order to the provided tapes. """ # pylint: disable=unused-argument for tape in tapes: # set the trainable parameters params = tape.get_parameters(trainable_only=False) tape.trainable_params = qml.math.get_trainable_indices(params) # pylint misidentifies autograd.builtins as a dict # pylint: disable=no-member parameters = autograd.builtins.tuple( [autograd.builtins.list(t.get_parameters()) for t in tapes] ) return _execute( parameters, tapes=tapes, device=device, execute_fn=execute_fn, gradient_fn=gradient_fn, gradient_kwargs=gradient_kwargs, _n=_n, max_diff=max_diff, )[0]
@autograd.extend.primitive def _execute( parameters, tapes=None, device=None, execute_fn=None, gradient_fn=None, gradient_kwargs=None, _n=1, max_diff=2, ): # pylint: disable=dangerous-default-value,unused-argument """Autodifferentiable wrapper around ``Device.batch_execute``. The signature of this function is designed to work around Autograd restrictions. Note that the ``parameters`` argument is dependent on the ``tapes`` argument; this function should always be called as follows: >>> parameters = [autograd.builtins.list(t.get_parameters()) for t in tapes]) >>> parameters = autograd.builtins.tuple(parameters) >>> _execute(parameters, tapes=tapes, device=device) In particular: - ``parameters`` is dependent on the provided tapes: always extract them as above - ``tapes`` is a *required* argument - ``device`` is a *required* argument The private argument ``_n`` is used to track nesting of derivatives, for example if the nth-order derivative is requested. Do not set this argument unless you understand the consequences! """ if logger.isEnabledFor(logging.DEBUG): logger.debug( "Entry with args=(parameters=%s, tapes=%s, device=%s, execute_fn=%s, gradient_fn=%s, gradient_kwargs=%s, _n=%s, max_diff=%s) called by=%s", parameters, tapes, repr(device), execute_fn if not (logger.isEnabledFor(qml.logging.TRACE) and inspect.isfunction(execute_fn)) else "\n" + inspect.getsource(execute_fn) + "\n", gradient_fn if not (logger.isEnabledFor(qml.logging.TRACE) and inspect.isfunction(gradient_fn)) else "\n" + inspect.getsource(gradient_fn) + "\n", gradient_kwargs, _n, max_diff, "::L".join(str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]), ) res, jacs = execute_fn(tapes, **gradient_kwargs) return res, jacs
[docs]def vjp( ans, parameters, tapes=None, device=None, execute_fn=None, gradient_fn=None, gradient_kwargs=None, _n=1, max_diff=2, ): # pylint: disable=dangerous-default-value,unused-argument """Returns the vector-Jacobian product operator for a batch of quantum tapes. Args: ans (array): the result of the batch tape execution parameters (list[list[Any]]): Nested list of the quantum tape parameters. This argument should be generated from the provided list of tapes. tapes (Sequence[.QuantumTape]): batch of tapes to execute device (pennylane.Device): Device to use to execute the batch of tapes. If the device does not provide a ``batch_execute`` method, by default the tapes will be executed in serial. execute_fn (callable): The execution function used to execute the tapes during the forward pass. This function must return a tuple ``(results, jacobians)``. If ``jacobians`` is an empty list, then ``gradient_fn`` is used to compute the gradients during the backwards pass. gradient_fn (callable): the gradient function to use to compute quantum gradients gradient_kwargs (dict): dictionary of keyword arguments to pass when determining the gradients of tapes _n (int): a positive integer used to track nesting of derivatives, for example if the nth-order derivative is requested. max_diff (int): If ``gradient_fn`` is a gradient transform, this option specifies the maximum number of derivatives to support. Increasing this value allows for higher order derivatives to be extracted, at the cost of additional (classical) computational overhead during the backwards pass. Returns: function: this function accepts the backpropagation gradient output vector, and computes the vector-Jacobian product """ if logger.isEnabledFor(logging.DEBUG): logger.debug( "Entry with args=(ans=%s, parameters=%s, tapes=%s, device=%s, execute_fn=%s, gradient_fn=%s, gradient_kwargs=%s, _n=%s, max_diff=%s) called by=%s", ans, parameters, tapes, repr(device), execute_fn if not (logger.isEnabledFor(qml.logging.TRACE) and inspect.isfunction(execute_fn)) else "\n" + inspect.getsource(execute_fn) + "\n", gradient_fn if not (logger.isEnabledFor(qml.logging.TRACE) and inspect.isfunction(gradient_fn)) else "\n" + inspect.getsource(gradient_fn) + "\n", gradient_kwargs, _n, max_diff, "::L".join(str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]), ) cached_jac = {} def _get_jac_with_caching(): if "jacobian" in cached_jac: return cached_jac["jacobian"] jacs = [] def partial_gradient_fn(tape): return gradient_fn(tape, **gradient_kwargs) g_tapes, fn = qml.transforms.map_batch_transform(partial_gradient_fn, tapes) res, _ = execute_fn(g_tapes, **gradient_kwargs) jacs = fn(res) cached_jac["jacobian"] = jacs return jacs def grad_fn(dy): """Returns the vector-Jacobian product with given parameter values and output gradient dy""" if logger.isEnabledFor(logging.DEBUG): logger.debug( "Entry with args=(dy=%s) called by=%s", dy, "::L".join( str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3] ), ) # multi measurement multi_measurements = [len(tape.measurements) > 1 for tape in tapes] dy = dy[0] computing_jacobian = _n == max_diff # assumes all tapes have the same shot vector has_partitioned_shots = tapes[0].shots.has_partitioned_shots if gradient_fn and gradient_fn.__name__ == "param_shift" and computing_jacobian: jacs = _get_jac_with_caching() else: jacs = ans[1] if jacs: # Jacobians were computed on the forward pass (mode="forward") or the Jacobian was cached # No additional quantum evaluations needed; simply compute the VJPs directly. vjps = _compute_vjps_autograd(jacs, dy, multi_measurements, has_partitioned_shots) else: # Need to compute the Jacobians on the backward pass (accumulation="backward") if isinstance(gradient_fn, qml.transforms.core.TransformDispatcher): # Gradient function is a gradient transform. # Generate and execute the required gradient tapes if _n == max_diff: vjp_tapes, processing_fn = qml.gradients.batch_vjp( tapes, dy, gradient_fn, reduction="append", gradient_kwargs=gradient_kwargs, ) vjps = processing_fn(execute_fn(vjp_tapes)[0]) else: vjp_tapes, processing_fn = qml.gradients.batch_vjp( tapes, dy, gradient_fn, reduction="append", gradient_kwargs=gradient_kwargs, ) # This is where the magic happens. Note that we call ``execute``. # This recursion, coupled with the fact that the gradient transforms # are differentiable, allows for arbitrary order differentiation. vjps = processing_fn( execute( vjp_tapes, device, execute_fn, gradient_fn, gradient_kwargs, _n=_n + 1, max_diff=max_diff, ) ) else: # Gradient function is not a gradient transform # (e.g., it might be a device method). # Note that unlike the previous branch: # # - there is no recursion here # - gradient_fn is not differentiable # # so we cannot support higher-order derivatives. jacs = gradient_fn(tapes, **gradient_kwargs) vjps = _compute_vjps_autograd(jacs, dy, multi_measurements, has_partitioned_shots) return_vjps = [ qml.math.to_numpy(v, max_depth=_n) if isinstance(v, ArrayBox) else v for v in vjps ] return return_vjps return grad_fn
def _compute_vjps_autograd(jacs, dy, multi_measurements, has_partitioned_shots): """Compute the vjps of multiple tapes, directly for a Jacobian and co-tangents dys.""" if logger.isEnabledFor(logging.DEBUG): logger.debug( "Entry with args=(jacs=%s, dy=%s, multi_measurements=%s, shots=%s) called by=%s", jacs, dy, multi_measurements, has_partitioned_shots, "::L".join(str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]), ) vjps = [] for i, multi in enumerate(multi_measurements): dy_ = dy[i] if has_partitioned_shots else (dy[i],) jac_ = jacs[i] if has_partitioned_shots else (jacs[i],) shot_vjps = [] for d, j in zip(dy_, jac_): if multi: shot_vjps.append(qml.gradients.compute_vjp_multi(d, j)) else: shot_vjps.append(qml.gradients.compute_vjp_single(d, j)) vjps.append(qml.math.sum(qml.math.stack(shot_vjps), axis=0)) return vjps autograd.extend.defvjp(_execute, vjp, argnums=[0])