Source code for pennylane.optimize.riemannian_gradient

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Riemannian gradient optimizer"""
import warnings

import numpy as np

import pennylane as qml
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.typing import PostprocessingFn


def null_postprocessing(results):
    """A postprocesing function returned by a transform that only converts the batch of results
    into a result for a single ``QuantumTape``.
    """
    return results[0]


@qml.transform
def append_time_evolution(
    tape: QuantumScript, riemannian_gradient, t, n, exact=False
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
    r"""Append an approximate time evolution, corresponding to a Riemannian
    gradient on the Lie group, to an existing circuit.

    We want to implement the time evolution generated by an operator of the form

    .. math::

        \text{grad} f(U) = sum_i c_i O_i,

    where :math:`O_i` are Pauli words and :math:`c_t \in \mathbb{R}`.
    If ``exact`` is ``False``, we Trotterize this operator and apply the unitary

    .. math::

        U' = \prod_{n=1}^{N_{Trot.}} \left(\prod_i \exp{-it / N_{Trot.} O_i}\right),

    which is then appended to the current circuit.

    If ``exact`` is ``True``, we calculate the exact time evolution for the Riemannian gradient
     by way of the matrix exponential.

    .. math:

        U' = \exp{-it \text{grad} f(U)}

    and append this unitary.

    Args:
        tape (QuantumTape or QNode or Callable): circuit to transform.
        riemannian_gradient (.Hamiltonian): Hamiltonian object representing the Riemannian gradient.
        t (float): time evolution parameter.
        n (int): number of Trotter steps.

    Returns:
        qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.


    """
    if exact:
        op = qml.evolve(riemannian_gradient, t)
    else:
        op = qml.templates.ApproxTimeEvolution(riemannian_gradient, t, n)

    new_tape = tape.copy(operations=tape.operations + [op])

    return [new_tape], null_postprocessing


@qml.transform
def algebra_commutator(tape, lie_algebra_basis_names, nqubits):
    """Calculate the Riemannian gradient in the Lie algebra with the parameter shift rule
    (see :meth:`RiemannianGradientOptimizer.get_omegas`).

    Args:
        tape (.QuantumTape or .QNode): input circuit
        lie_algebra_basis_names (list[str]): List of strings corresponding to valid Pauli words.
        nqubits (int): the number of qubits.

    Returns:
        tuple[list[QuantumTape], function]:

        - If the input is a QNode, an object representing the Riemannian gradient function
          of the QNode that can be executed with the same arguments as the QNode to obtain
          the Lie algebra commutator.

        - If the input is a tape, a tuple containing a
          list of generated tapes, together with a post-processing
          function to be applied to the results of the evaluated tapes
          in order to obtain the Lie algebra commutator.
    """

    wires = list(range(nqubits))
    paulis_plus = (qml.PauliRot(np.pi / 2, pauli, wires=wires) for pauli in lie_algebra_basis_names)
    paulis_minus = (
        qml.PauliRot(-np.pi / 2, pauli, wires=wires) for pauli in lie_algebra_basis_names
    )

    tapes_plus = [tape.copy(operations=tape.operations + [op]) for op in paulis_plus]
    tapes_minus = [tape.copy(operations=tape.operations + [op]) for op in paulis_minus]

    def calculate_omegas(results):
        results_plus = qml.math.hstack(results[: len(results) // 2])
        results_minus = qml.math.hstack(results[len(results) // 2 :])
        return results_plus - results_minus

    return tapes_plus + tapes_minus, calculate_omegas


[docs]class RiemannianGradientOptimizer: r"""Riemannian gradient optimizer. Riemannian gradient descent algorithms can be used to optimize a function directly on a Lie group as opposed to on an Euclidean parameter space. Consider the function :math:`f(U) = \text{Tr}(U \rho_0 U^\dagger H)` for a given Hamiltonian :math:`H`, unitary :math:`U\in \text{SU}(2^N)` and initial state :math:`\rho_0`. One can show that this function is minimized by the flow equation .. math:: \dot{U} = \text{grad}f(U) where :math:`\text{grad}` is the Riemannian gradient operator on :math:`\text{SU}(2^N)`. By discretizing the flow above, we see that a step of this optimizer iterates the Riemannian gradient flow on :math:`\text{SU}(2^N)` as .. math:: U^{(t+1)} = \exp\left\{\epsilon\: \text{grad}f(U^{(t)}) U^{(t)}\right\}, where :math:`\epsilon` is a user-defined hyperparameter corresponding to the step size. The Riemannian gradient in the Lie algebra is given by .. math:: \text{grad}f(U^{(t)}) = -\left[U \rho U^\dagger, H\right] . Hence we see that subsequent steps of this optimizer will append the unitary generated by the Riemannian gradient and grow the circuit. The exact Riemannian gradient flow on :math:`\text{SU}(2^N)` has desirable optimization properties that can guarantee convergence to global minima under mild assumptions. However, this comes at a cost. Since :math:`\text{dim}(\text{SU}(2^N)) = 4^N-1`, we need an exponential number of parameters to calculate the gradient. This will not be problematic for small systems (:math:`N<5`), but will quickly get out of control as the number of qubits increases. To resolve this issue, we can restrict the Riemannian gradient to a subspace of the Lie algebra and calculate an approximate Riemannian gradient flow. The choice of restriction will affect the optimization behaviour and quality of the final solution. For more information on Riemannian gradient flows on Lie groups see `T. Schulte-Herbrueggen et. al. (2008) <https://arxiv.org/abs/0802.4195>`_ and the application to quantum circuits `Wiersema and Killoran (2022) <https://arxiv.org/abs/2202.06976>`_. Args: circuit (.QNode): a user defined circuit that does not take any arguments and returns the expectation value of a ``qml.Hamiltonian``. stepsize (float): the user-defined hyperparameter :math:`\epsilon`. restriction (.Hamiltonian): Restrict the Lie algebra to a corresponding subspace of the full Lie algebra. This restriction should be passed in the form of a ``qml.Hamiltonian`` that consists only of Pauli words. exact (bool): Flag that indicates wether we approximate the Riemannian gradient with a Trotterization or calculate the exact evolution via a matrix exponential. The latter is not hardware friendly and can only be done in simulation. **Examples** Define a Hamiltonian cost function to minimize: >>> coeffs = [-1., -1., -1.] >>> observables = [qml.X(0), qml.Z(1), qml.Y(0) @ qml.X(1)] >>> hamiltonian = qml.Hamiltonian(coeffs, observables) Create an initial state and return the expectation value of the Hamiltonian: >>> @qml.qnode(qml.device("default.qubit", wires=2)) ... def quant_fun(): ... qml.RX(0.1, wires=[0]) ... qml.RY(0.5, wires=[1]) ... qml.CNOT(wires=[0,1]) ... qml.RY(0.6, wires=[0]) ... return qml.expval(hamiltonian) Instantiate the optimizer with the initial circuit and the cost function and set the stepsize accordingly: >>> opt = qml.RiemannianGradientOptimizer(circuit=quant_fun, stepsize=0.1) Applying 5 steps gets us close the ground state of :math:`E\approx-2.23`: >>> for step in range(6): ... circuit, cost = opt.step_and_cost() ... print(f"Step {step} - cost {cost}") Step 0 - cost -1.3351865007304005 Step 1 - cost -1.9937887238935206 Step 2 - cost -2.1524234485729834 Step 3 - cost -2.1955105378898487 Step 4 - cost -2.2137628169764256 Step 5 - cost -2.2234364822091575 The optimized circuit is returned at each step, and can be used as any other QNode: >>> circuit() -2.2283086057521713 """ # pylint: disable=too-many-arguments, too-many-positional-arguments # pylint: disable=too-many-instance-attributes def __init__(self, circuit, stepsize=0.01, restriction=None, exact=False, trottersteps=1): if not isinstance(circuit, qml.QNode): raise TypeError(f"circuit must be a QNode, received {type(circuit)}") self.circuit = circuit.update(diff_method=None) self.exact = exact self.trottersteps = trottersteps self.stepsize = stepsize self.nqubits = len(circuit.device.wires) self.hamiltonian = circuit.func().obs if not isinstance(self.hamiltonian, qml.ops.LinearCombination): raise TypeError( f"circuit must return the expectation value of a Hamiltonian," f"received {type(circuit.func().obs)}" ) self.coeffs, self.observables = self.hamiltonian.terms() if self.nqubits > 4: warnings.warn( "The exact Riemannian gradient is exponentially expensive in the number of qubits, " f"optimizing a {self.nqubits} qubit circuit may be slow.", UserWarning, ) if restriction is not None and not isinstance(restriction, qml.ops.LinearCombination): raise TypeError(f"restriction must be a Hamiltonian, received {type(restriction)}") ( self.lie_algebra_basis_ops, self.lie_algebra_basis_names, ) = self.get_su_n_operators(restriction)
[docs] def step(self): r"""Update the circuit with one step of the optimizer. Returns: float: the optimized circuit and the objective function output prior to the step. """ return self.step_and_cost()[0]
[docs] def step_and_cost(self): r"""Update the circuit with one step of the optimizer and return the corresponding objective function value prior to the step. Returns: tuple[.QNode, float]: the optimized circuit and the objective function output prior to the step. """ # pylint: disable=not-callable cost = self.circuit() omegas = self.get_omegas() non_zero_omegas = -omegas[omegas != 0] nonzero_idx = np.nonzero(omegas)[0] lie_gradient = qml.Hamiltonian( non_zero_omegas, [self.lie_algebra_basis_ops[i] for i in nonzero_idx], ) self.circuit = append_time_evolution( self.circuit, lie_gradient, self.stepsize, self.trottersteps, self.exact ) return self.circuit, cost
[docs] def get_su_n_operators(self, restriction): r"""Get the SU(N) operators. The dimension of the group is :math:`N^2-1`. Args: restriction (.Hamiltonian): Restrict the Riemannian gradient to a subspace. Returns: tuple[list[array[complex]], list[str]]: list of :math:`N^2 \times N^2` NumPy complex arrays and corresponding Pauli words. """ # construct the corresponding pennylane observables wire_map = {i: i for i in range(self.nqubits)} ops = list(restriction.ops) if restriction else list(qml.pauli.pauli_group(self.nqubits)) return ops, [qml.pauli.pauli_word_to_string(ps, wire_map=wire_map) for ps in ops]
[docs] def get_omegas(self): r"""Measure the coefficients of the Riemannian gradient with respect to a Pauli word basis. We want to calculate the components of the Riemannian gradient in the Lie algebra with respect to a Pauli word basis. For a Hamiltonian of the form :math:`H = \sum_i c_i O_i`, where :math:`c_i\in\mathbb{R}`, this can be achieved by calculating .. math:: \omega_{i,j} = \text{Tr}(c_i[\rho, O_i] P_j) where :math:`P_j` is a Pauli word in the set of Pauli monomials on :math:`N` qubits. Via the parameter shift rule, the commutator can be calculated as .. math:: [\rho, O_i] = \frac{1}{2}(V(\pi/2) \rho V^\dagger(\pi/2) - V(-\pi/2) \rho V^\dagger(-\pi/2)) where :math:`V` is the unitary generated by the Pauli word :math:`V(\theta) = \exp\{-i\theta P_j\}`. Returns: array: array of omegas for each direction in the Lie algebra. """ # pylint: disable=not-callable return algebra_commutator(self.circuit, self.lie_algebra_basis_names, self.nqubits)()