• Learn
  • Demos
  • Install
  • Plugins
  • Documentation (current)
  • Blog
  • QHack
  • FAQ
  • Support
  • GitHub

Navigation

  • index
  • modules |
  • next |
  • previous |
  • PennyLane 0.29.1 documentation »
  • Development guide

Using PennyLane

  • What is PennyLane?
  • Quantum circuits
  • Gradients and training
  • Quantum operators
  • Measurements
  • Templates
  • Inspecting circuits
  • Compiling circuits
  • Quantum Chemistry
  • Quantum Datasets

Development

  • Development guide
  • Building a plugin
  • Adding new operators
  • Deprecations
  • Release notes

API

  • qml
  • qml.data
  • qml.drawer
  • qml.fourier
  • qml.gradients
  • qml.kernels
  • qml.math
  • qml.numpy
  • qml.ops.op_math
  • qml.pauli
  • qml.pulse
  • qml.qinfo
  • qml.resource
  • qml.shadows
  • qml.transforms
  • qml.qaoa
  • qml.qchem
  • qml.qnn

Internals

  • qml.devices
  • qml.interfaces
  • qml.measurements
  • qml.operation
  • qml.queuing
  • qml.tape
  • qml.utils
  • qml.wires
  1. Docs
  2. Development guide

Development guide¶

The Development guide contains information regarding how to contribute to the PennyLane codebase.

The guides below are aimed towards developers and cover how to install PennyLane and its dependencies in development mode, run and add tests, write documentation, as well as general best practices and an architectural overview of PennyLane, plugins, and devices.

Installation

Installation and dependencies of the PennyLane source code using development mode.

Contribution guide

How to get involved in the PennyLane community and help improve PennyLane.

Software tests

Installing dependencies, running the PennyLane test suite and measuring coverage.

Documentation

Building and contributing modules and packages to the PennyLane documentation.

Submitting a pull request

Creating and submitting a pull request to the PennyLane repository.

Architecture Design Records

Proposing important PennyLane architectural decisions.

Architectural overview

Architectural overview of PennyLane, its plugins and devices.


development/guide
 
Download Python script
 
Download Notebook
 
View on GitHub
Previous
Next

Contents

Using PennyLane

  • What is PennyLane?
  • Quantum circuits
  • Gradients and training
  • Quantum operators
  • Measurements
  • Templates
  • Inspecting circuits
  • Compiling circuits
  • Quantum Chemistry
  • Quantum Datasets

Development

  • Development guide
    • Installation and dependencies
    • Contributing to PennyLane
    • Software tests
    • Documentation
    • Submitting a pull request
    • Architecture Design Records
    • Architectural overview
  • Building a plugin
  • Adding new operators
  • Deprecations
  • Release notes

API

  • qml
  • qml.data
  • qml.drawer
  • qml.fourier
  • qml.gradients
  • qml.kernels
  • qml.math
  • qml.numpy
  • qml.ops.op_math
  • qml.pauli
  • qml.pulse
  • qml.qinfo
  • qml.resource
  • qml.shadows
  • qml.transforms
  • qml.qaoa
  • qml.qchem
  • qml.qnn

Internals

  • qml.devices
  • qml.interfaces
  • qml.measurements
  • qml.operation
  • qml.queuing
  • qml.tape
  • qml.utils
  • qml.wires

Downloads

development/guide
 
Download Python script
 
Download Notebook
 
View on GitHub

Related

Navigation

  • index
  • modules |
  • next |
  • previous |
  • PennyLane 0.29.1 documentation »
  • Development guide

PennyLane

PennyLane is an open-source software framework for quantum machine learning, quantum chemistry, and quantum computing, with the ability to run on all hardware. Maintained with ❤️ by Xanadu.

PennyLane

  • Home
  • Learn
  • Demonstrations
  • Documentation
  • GitHub
  • Twitter
  • Blog
Xanadu

  • Home
  • About
  • Hardware
  • Careers
  • Cloud
  • Forum
  • Blog

Stay updated with our newsletter
Copyright © 2022, Xanadu Quantum Technologies
TensorFlow, the TensorFlow logo, and any related marks are trademarks of Google Inc.