Quantum Datasets¶
PennyLane provides the data
subpackage to download, create, store and manipulate quantum datasets,
where the quantum dataset is a collection of quantum data obtained from various quantum systems that describe it and its evolution.
Note
The packages aiohttp
, fsspec
, and h5py
are required to use the data
module.
These can be installed with:
pip install aiohttp fsspec h5py
Loading Datasets in PennyLane¶
We can access data of a desired type with the load()
or load_interactive()
functions.
These download the desired datasets or load them from local storage if previously downloaded.
To specify the dataset to be loaded, the data category (data_name
) must be
specified, alongside category-specific keyword arguments. For the full list
of available datasets, please see the datasets website.
The load()
function returns a list
with the desired data.
>>> H2datasets = qml.data.load("qchem", molname="H2", basis="STO-3G", bondlength=1.1)
>>> print(H2datasets)
[<Dataset = molname: H2, basis: STO-3G, bondlength: 1.1, attributes: ['basis', 'basis_rot_groupings', ...]>]
>>> H2data = H2datasets[0]
We can load datasets for multiple parameter values by providing a list of values instead of a single value.
To load all possible values, use the special value FULL
or the string "full"
:
>>> H2datasets = qml.data.load("qchem", molname="H2", basis="full", bondlength=[0.5, 1.1])
>>> print(H2datasets)
[<Dataset = molname: H2, basis: STO-3G, bondlength: 0.5, attributes: ['basis', 'basis_rot_groupings', ...]>,
<Dataset = molname: H2, basis: STO-3G, bondlength: 1.1, attributes: ['basis', 'basis_rot_groupings', ...]>,
<Dataset = molname: H2, basis: CC-PVDZ, bondlength: 0.5, attributes: ['basis', 'basis_rot_groupings', ...]>,
<Dataset = molname: H2, basis: CC-PVDZ, bondlength: 1.1, attributes: ['basis', 'basis_rot_groupings', ...]>,
<Dataset = molname: H2, basis: 6-31G, bondlength: 0.5, attributes: ['basis', 'basis_rot_groupings', ...]>,
<Dataset = molname: H2, basis: 6-31G, bondlength: 1.1, attributes: ['basis', 'basis_rot_groupings', ...]>]
When we only want to download portions of a large dataset, we can specify the desired properties (referred to as ‘attributes’). For example, we can download or load only the molecule and energy of a dataset as follows:
>>> part = qml.data.load("qchem", molname="H2", basis="STO-3G", bondlength=1.1,
... attributes=["molecule", "fci_energy"])[0]
>>> part.molecule
<Molecule = H2, Charge: 0, Basis: STO-3G, Orbitals: 2, Electrons: 2>
>>> part.fci_energy
-1.0791924385860894
To determine what attributes are available for a type of dataset, we can use the function list_attributes()
:
>>> qml.data.list_attributes(data_name="qchem")
['molname',
'basis',
'bondlength',
...
'vqe_params',
'vqe_energy']
Note
The default values for attributes are as follows:
Molecules:
basis
is the smallest available basis, usually"STO-3G"
, andbondlength
is the optimal bondlength for the molecule or an alternative if the optimal is not known.Spin systems:
periodicity
is"open"
,lattice
is"chain"
, andlayout
is1x4
forchain
systems and2x2
forrectangular
systems.
Using Datasets in PennyLane¶
Once loaded, one can access properties of the datasets:
>>> H2data.molecule
<Molecule = H2, Charge: 0, Basis: STO-3G, Orbitals: 2, Electrons: 2>
>>> print(H2data.hf_state)
[1 1 0 0]
The loaded data items are fully compatible with PennyLane. We can therefore use them directly in a PennyLane circuits as follows:
>>> dev = qml.device("default.qubit",wires=4)
>>> @qml.qnode(dev)
... def circuit():
... qml.BasisState(H2data.hf_state, wires = [0, 1, 2, 3])
... for op in H2data.vqe_gates:
... qml.apply(op)
... return qml.expval(H2data.hamiltonian)
>>> print(circuit())
-1.0791430411076344
Viewing Available Datasets¶
We can call the
list_datasets()
function to get a snapshot of the currently available data.
This function returns a nested dictionary as shown below.
>>> available_data = qml.data.list_datasets()
>>> available_data.keys()
dict_keys(["qspin", "qchem"])
>>> available_data["qchem"].keys()
dict_keys(["H2", "LiH", ...])
>>> available_data['qchem']['H2'].keys()
dict_keys(["6-31G", "STO-3G"])
>>> print(available_data['qchem']['H2']['STO-3G'])
["0.5", "0.54", "0.62", "0.66", ...]
Note that this example limits the results of the function calls for clarity and that as more data becomes available, the results of these function calls will change.
Creating Custom Datasets¶
The functionality in data
also includes creating and reading custom-made datasets.
We can use custom datasets to store any data generated in PennyLane and its supporting data.
To create a dataset, we can do the following:
>>> coeffs = [1, 0.5]
>>> observables = [qml.Z(0), qml.X(1)]
>>> H = qml.Hamiltonian(coeffs, observables)
>>> energies, _ = np.linalg.eigh(qml.matrix(H)) #Calculate the energies
>>> dataset = qml.data.Dataset(data_name = "Example", hamiltonian=H, energies=energies)
>>> dataset.data_name
"Example"
>>> dataset.hamiltonian
1.0 * Z(0) + 0.5 * X(1)
>>> dataset.energies
array([-1.5, -0.5, 0.5, 1.5])
We can then write this Dataset
to storage and read it as follows:
>>> dataset.write("./path/to/dataset.h5")
>>> read_dataset = qml.data.Dataset()
>>> read_dataset.read("./path/to/dataset.h5")
>>> read_dataset.data_name
"Example"
>>> read_dataset.hamiltonian
1.0 * Z(0) + 0.5 * X(1)
>>> read_dataset.energies
array([-1.5, -0.5, 0.5, 1.5])
For more details on reading and writing custom datasets, including metadata, please
see the data
module documentation.
Quantum Datasets Functions and Classes¶
Returns a dictionary of the available datasets. List the attributes that exist for a specific Downloads the data if it is not already present in the directory and returns it as a list of Download a dataset using an interactive load prompt. Base class for Datasets.
data_name
.
Dataset
objects.