Source code for pennylane.templates.state_preparations.basis_qutrit
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.r"""Contains the QutritBasisStatePreparation template."""importnumpyasnpimportpennylaneasqmlfrompennylane.operationimportAnyWires,Operation
[docs]classQutritBasisStatePreparation(Operation):r""" Prepares a basis state on the given wires using a sequence of TShift gates. .. warning:: ``basis_state`` influences the circuit architecture and is therefore incompatible with gradient computations. Args: basis_state (array): Input array of shape ``(n,)``, where n is the number of wires the state preparation acts on. wires (Iterable): wires that the template acts on **Example** .. code-block:: python dev = qml.device("default.qutrit", wires=4) @qml.qnode(dev) def circuit(basis_state, obs): qml.QutritBasisStatePreparation(basis_state, wires=range(4)) return [qml.expval(qml.THermitian(obs, wires=i)) for i in range(4)] basis_state = [0, 1, 1, 0] obs = np.array([[1, 1, 0], [1, -1, 0], [0, 0, np.sqrt(2)]]) / np.sqrt(2) >>> print(circuit(basis_state, obs)) [array(0.70710678), array(-0.70710678), array(-0.70710678), array(0.70710678)] """num_params=1num_wires=AnyWiresgrad_method=Nonedef__init__(self,basis_state,wires,id=None):basis_state=qml.math.stack(basis_state)# check if the `basis_state` param is batchedbatched=len(qml.math.shape(basis_state))>1state_batch=basis_stateifbatchedelse[basis_state]fori,stateinenumerate(state_batch):shape=qml.math.shape(state)iflen(shape)!=1:raiseValueError(f"Basis states must be one-dimensional; state {i} has shape {shape}.")n_bits=shape[0]ifn_bits!=len(wires):raiseValueError(f"Basis states must be of length {len(wires)}; state {i} has length {n_bits}.")ifnotqml.math.is_abstract(basis_state):ifany(bitnotin[0,1,2]forbitinstate):raiseValueError(f"Basis states must only consist of 0s, 1s, and 2s; state {i} is {state}")# TODO: basis_state should be a hyperparameter, not a trainable parameter.# However, this breaks a test that ensures compatibility with batch_transform.# The transform should be rewritten to support hyperparameters as well.super().__init__(basis_state,wires=wires,id=id)
[docs]@staticmethoddefcompute_decomposition(basis_state,wires):# pylint: disable=arguments-differr"""Representation of the operator as a product of other operators. .. math:: O = O_1 O_2 \dots O_n. .. seealso:: :meth:`~.BasisState.decomposition`. Args: basis_state (array): Input array of shape ``(len(wires),)`` wires (Any or Iterable[Any]): wires that the operator acts on Returns: list[.Operator]: decomposition of the operator **Example** >>> qml.QutritBasisStatePreparation.compute_decomposition(basis_state=[1, 2], wires=["a", "b"]) [Tshift(wires=['a']), Tshift(wires=['b']), TShift(wires=['b'])] """op_list=[]ifqml.math.is_abstract(basis_state):forwire,stateinzip(wires,basis_state):op_list.extend([qml.TRY(state*(2-state)*np.pi,wires=wire,subspace=(0,1)),qml.TRY(state*(1-state)*np.pi/2,wires=wire,subspace=(0,2)),qml.TRZ((-2*state+3)*state*np.pi,wires=wire,subspace=(0,2)),qml.TRY(state*(2-state)*np.pi,wires=wire,subspace=(0,2)),qml.TRY(state*(1-state)*np.pi/2,wires=wire,subspace=(0,1)),qml.TRZ(-(7*state-10)*state*np.pi,wires=wire,subspace=(0,2)),])returnop_listforwire,stateinzip(wires,basis_state):for_inrange(state):op_list.append(qml.TShift(wire))returnop_list