# Copyright 2018-2024 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Transform for adding a noise model to a quantum circuit or device"""fromcopyimportcopyfromfunctoolsimportlru_cacheimportpennylaneasqmlfrompennylane.transforms.coreimportTransformContainer,transform# pylint: disable=too-many-branches
[docs]@transformdefadd_noise(tape,noise_model,level=None):"""Insert operations according to a provided noise model. Circuits passed through this quantum transform will be updated to apply the insertion-based :class:`~.NoiseModel`, which contains mappings ``{BooleanFn: Callable}`` from conditions to the corresponding noise gates for circuit operations and measurements respectively. First, each condition in the first mapping of a noise model will be evaluated on the operations contained within the given circuit. For conditions that evaluate to ``True``, the noisy gates contained within the ``Callable`` will be inserted after the operation under consideration. Similar procedure will be followed for each measurement in the circuit, in case a second mapping is present in the noise model to indicate readout errors. Args: tape (QNode or QuantumTape or Callable or pennylane.devices.Device): the input circuit or device to be transformed. noise_model (~pennylane.NoiseModel): noise model according to which noise has to be inserted. level (None, str, int, slice): An indication of which stage in the transform program the noise model should be applied to. Only relevant when transforming a ``QNode``. More details on the following permissible values can be found in the :func:`~.workflow.get_transform_program` - * ``None``: expands the tape to have no ``Adjoint`` and ``Templates``. * ``str``: acceptable keys are ``"top"``, ``"user"``, ``"device"``, and ``"gradient"``. * ``int``: how many transforms to include, starting from the front of the program. * ``slice``: a slice to select out components of the transform program. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[.QuantumTape], function] or device (pennylane.devices.Device): Transformed circuit as described in :func:`qml.transform <pennylane.transform>`. Raises: ValueError: argument ``noise_model`` is not a valid noise model. .. note:: For a given ``model_map`` and ``meas_map`` within a ``NoiseModel``, if multiple conditionals in the given maps evaluate to ``True`` for an operation or measurement process, then the noise operations defined via their respective noisy quantum functions will be added in the same order in which the conditionals appear in them. **Example:** The following QNode can be transformed to add noise to the circuit: .. code-block:: python3 from functools import partial dev = qml.device("default.mixed", wires=2) fcond1 = qml.noise.op_eq(qml.RX) & qml.noise.wires_in([0, 1]) noise1 = qml.noise.partial_wires(qml.PhaseDamping, 0.4) fcond2 = qml.noise.op_in([qml.RX, qml.RZ]) def noise2(op, **kwargs): qml.ThermalRelaxationError(op.parameters[0] * 0.5, kwargs["t1"], kwargs["t2"], 0.6, op.wires) fcond3 = qml.noise.meas_eq(qml.expval) & qml.noise.wires_in([0, 1]) noise3 = qml.noise.partial_wires(qml.PhaseFlip, 0.2) noise_model = qml.NoiseModel( {fcond1: noise1, fcond2: noise2}, {fcond3: noise3}, t1=2.0, t2=0.2 ) @partial(qml.transforms.add_noise, noise_model=noise_model) @qml.qnode(dev) def circuit(w, x, y, z): qml.RX(w, wires=0) qml.RY(x, wires=1) qml.CNOT(wires=[0, 1]) qml.RY(y, wires=0) qml.RX(z, wires=1) return qml.expval(qml.Z(0) @ qml.Z(1)) Executions of this circuit will differ from the noise-free value: .. code-block:: python >>> circuit(0.9, 0.4, 0.5, 0.6) array(0.544053) >>> print(qml.draw(circuit)(0.9, 0.4, 0.5, 0.6)) 0: ──RX(0.90)──PhaseDamping(0.40)──ThermalRelaxationError(0.45,2.00,0.20,0.60)─╭●──RY(0.50) 1: ──RY(0.40)──────────────────────────────────────────────────────────────────╰X──RX(0.60) ────────────────────────────────────────────────────────────────────PhaseFlip(0.2)─┤ ╭<Z@Z> ───PhaseDamping(0.40)──ThermalRelaxationError(0.30,2.00,0.20,0.60)──PhaseFlip(0.2)─┤ ╰<Z@Z> .. details:: :title: Tranform Levels :href: add-noise-levels When transforming an already constructed ``QNode``, the ``add_noise`` transform will be added at the end of the "user" transforms by default, i.e., after all the transforms that have been manually applied to the QNode up to that point. .. code-block:: python3 dev = qml.device("default.mixed", wires=2) @qml.metric_tensor @qml.transforms.undo_swaps @qml.transforms.merge_rotations @qml.transforms.cancel_inverses @qml.qnode(dev) def circuit(w, x, y, z): qml.RX(w, wires=0) qml.RY(x, wires=1) qml.CNOT(wires=[0, 1]) qml.RY(y, wires=0) qml.RX(z, wires=1) return qml.expval(qml.Z(0) @ qml.Z(1)) noisy_circuit = qml.transforms.add_noise(circuit, noise_model) >>> qml.workflow.get_transform_program(circuit) TransformProgram(cancel_inverses, merge_rotations, undo_swaps, _expand_metric_tensor, batch_transform, expand_fn, metric_tensor) >>> qml.workflow.get_transform_program(noisy_circuit) TransformProgram(cancel_inverses, merge_rotations, undo_swaps, _expand_metric_tensor, add_noise, batch_transform, expand_fn, metric_tensor) However, one can request to insert the ``add_noise`` transform at any specific point in the transform program. By specifying the ``level`` keyword argument while transforming a ``QNode``, this transform can be added at a designated level within the transform program, as determined using the :func:`get_transform_program <pennylane.workflow.get_transform_program>`. For example, specifying ``None`` will add it at the end, ensuring that the tape is expanded to have no ``Adjoint`` and ``Templates``: >>> qml.transforms.add_noise(circuit, noise_model, level=None).transform_program TransformProgram(cancel_inverses, merge_rotations, undo_swaps, _expand_metric_tensor, batch_transform, expand_fn, add_noise, metric_tensor) Other acceptable values for ``level`` are ``"top"``, ``"user"``, ``"device"``, and ``"gradient"``. Among these, `"top"` will allow addition to an empty transform program, `"user"` will allow addition at the end of user-specified transforms, `"device"` will allow addition at the end of device-specific transforms, and `"gradient"` will allow addition at the end of transforms that expand trainable operations. For example: >>> qml.transforms.add_noise(circuit, noise_model, level="top").transform_program TransformProgram(add_noise) >>> qml.transforms.add_noise(circuit, noise_model, level="user").transform_program TransformProgram(cancel_inverses, merge_rotations, undo_swaps, _expand_metric_tensor, add_noise, metric_tensor) >>> qml.transforms.add_noise(circuit, noise_model, level="device").transform_program TransformProgram(cancel_inverses, merge_rotations, undo_swaps, _expand_metric_tensor, batch_transform, expand_fn, add_noise, metric_tensor) Finally, more precise control over the insertion of the transform can be achieved by specifying an integer or slice for indexing when extracting the transform program. For example, one can do: >>> qml.transforms.add_noise(circuit, noise_model, level=2).transform_program TransformProgram(cancel_inverses, merge_rotations, add_noise) >>> qml.transforms.add_noise(circuit, noise_model, level=slice(1,3)).transform_program TransformProgram(merge_rotations, undo_swaps, add_noise) """ifnothasattr(noise_model,"model_map")ornothasattr(noise_model,"metadata"):raiseValueError(f"Provided noise model object must define model_map and metatadata attributes, got {noise_model}.")iflevelisNoneorlevel=="user":# decompose templates and their adjointsdefstop_at(obj):ifnotisinstance(obj,qml.operation.Operator):returnTrueifnotobj.has_decomposition:returnTruereturnnot(hasattr(qml.templates,obj.name)orisinstance(obj,qml.ops.Adjoint))error_type=(qml.operation.DecompositionUndefinedError,)decompose=qml.devices.preprocess.decompose[tape],_=decompose(tape,stopping_condition=stop_at,name="add_noise",error=error_type)conditions,noises=[],[]metadata=noise_model.metadataforcondition,noiseinnoise_model.model_map.items():conditions.append(lru_cache(maxsize=512)(condition))noises.append(qml.tape.make_qscript(noise))new_operations=[]foroperationintape.operations:curr_ops=[operation]forcondition,noiseinzip(conditions,noises):ifcondition(operation):noise_ops=noise(operation,**metadata).operationsifoperationinnoise_opsand_check_queue_op(operation,noise,metadata):ops_indx=noise_ops.index(operation)curr_ops=noise_ops[:ops_indx]+curr_ops+noise_ops[ops_indx+1:]else:curr_ops.extend(noise_ops)new_operations.extend(curr_ops)ifnotnoise_model.meas_map:new_tape=tape.copy(operations=new_operations)return[new_tape],qml.devices.preprocess.null_postprocessingmeas_conds,meas_funcs=[],[]forcondition,noiseinnoise_model.meas_map.items():meas_conds.append(lru_cache(maxsize=512)(condition))meas_funcs.append(qml.tape.make_qscript(noise))split_operations,split_measurements=[],[[]foridxintape.measurements]formidx,measurementinenumerate(tape.measurements):readout_operations=new_operations.copy()forcondition,noiseinzip(meas_conds,meas_funcs):ifcondition(measurement):noise_ops=noise(measurement,**metadata).operationsreadout_operations.extend(noise_ops)ifreadout_operationsnotinsplit_operations:split_operations.append(readout_operations)split_measurements[split_operations.index(readout_operations)].append((midx,measurement))split_measurements=split_measurements[:len(split_operations)]split_meas_indexes=qml.math.argsort([m_formsin([m[0]forminmeas]formeasinsplit_measurements)form_inms])new_tapes=[tape.copy(operations=operations,measurements=[meas[1]formeasinmeasurements])foroperations,measurementsinzip(split_operations,split_measurements)]defpost_processing_fn(results):"""A postprocessing function returned by a transform that converts the batch of results into a squeezed result."""split_results=[]forresultinresults:getattr(split_results,"append"ifnotisinstance(result,tuple)else"extend")(result)final_res=[split_results[idx]foridxinsplit_meas_indexes]returntuple(final_res)iflen(final_res)>1elsefinal_res[0]returnnew_tapes,post_processing_fn
def_check_queue_op(operation,noise_func,metadata):"""Performs a secondary check for existence of an operation in the queue using a randomized ID"""test_id="f49968bfc4W0H86df3A733bf6e92904d21a_!$-T-@!_c131S549b169b061I25b85398bfd8ec1S3c"test_queue=noise_func(qml.noise.partial_wires(operation,id=test_id)(operation.wires),**metadata).operationsreturnany(test_id==getattr(o,"id","")forointest_queue)# pylint:disable = protected-access@add_noise.custom_qnode_transformdefcustom_qnode_wrapper(self,qnode,targs,tkwargs):"""QNode execution wrapper for supporting ``add_noise`` with levels"""cqnode=copy(qnode)level=tkwargs.get("level","user")transform_program=qml.workflow.get_transform_program(qnode,level=level)cqnode._transform_program=transform_programcqnode.add_transform(TransformContainer(self._transform,targs,{**tkwargs},self._classical_cotransform,self._is_informative,self._final_transform,))returncqnode