qml.spin.fermi_hubbard¶
- fermi_hubbard(lattice, n_cells, hopping=1.0, coulomb=1.0, boundary_condition=False, neighbour_order=1, mapping='jordan_wigner')[source]¶
Generates the Hamiltonian for the Fermi-Hubbard model on a lattice.
The Hamiltonian is represented as:
ˆH=−t∑<i,j>,σc†iσcjσ+U∑ini↑ni↓where t is the hopping term representing the kinetic energy of electrons, U is the on-site Coulomb interaction representing the repulsion between electrons, <i,j> represents the indices of neighbouring spins, σ is the spin degree of freedom, and ni↑,ni↓ are number operators for spin-up and spin-down fermions at site i. This function assumes two fermions with opposite spins on each lattice site.
- Parameters
lattice (str) – Shape of the lattice. Input values can be
'chain'
,'square'
,'rectangle'
,'triangle'
,'honeycomb'
,'kagome'
,'lieb'
,'cubic'
,'bcc'
,'fcc'
or'diamond'
.n_cells (List[int]) – Number of cells in each direction of the grid.
hopping (float or tensor_like[float]) – Hopping strength between neighbouring sites. It can be a number, an array of length equal to
neighbour_order
or a square matrix of shape(num_spins, num_spins)
, wherenum_spins
is the total number of spins. Default value is 1.0.coulomb (float or tensor_like[float]) – Coulomb interaction between spins. It can be a constant or an array of length equal to the number of spins.
boundary_condition (bool or list[bool]) – Specifies whether or not to enforce periodic boundary conditions for the different lattice axes. Default is
False
indicating open boundary condition.neighbour_order (int) – Specifies the interaction level for neighbors within the lattice. Default is 1, indicating nearest neighbours.
mapping (str) – Specifies the fermion-to-qubit mapping. Input values can be
'jordan_wigner'
,'parity'
or'bravyi_kitaev'
.
- Returns
Hamiltonian for the Fermi-Hubbard model.
- Return type
Example
>>> n_cells = [2] >>> t = 0.5 >>> u = 1.0 >>> spin_ham = qml.spin.fermi_hubbard("chain", n_cells, hopping=t, coulomb=u) >>> spin_ham ( -0.25 * (Y(0) @ Z(1) @ Y(2)) + -0.25 * (X(0) @ Z(1) @ X(2)) + 0.5 * I(0) + -0.25 * (Y(1) @ Z(2) @ Y(3)) + -0.25 * (X(1) @ Z(2) @ X(3)) + -0.25 * Z(1) + -0.25 * Z(0) + 0.25 * (Z(0) @ Z(1)) + -0.25 * Z(3) + -0.25 * Z(2) + 0.25 * (Z(2) @ Z(3)) )