qml.tape.QuantumScript¶
-
class
QuantumScript
(ops=None, measurements=None, prep=None, shots=None, name=None, _update=True)[source]¶ Bases:
object
The state preparation, operations, and measurements that represent instructions for execution on a quantum device.
- Parameters
ops (Iterable[Operator]) – An iterable of the operations to be performed
measurements (Iterable[MeasurementProcess]) – All the measurements to be performed
prep (Iterable[Operator]) – Any state preparations to perform at the start of the circuit
- Keyword Arguments
shots (None, int, Sequence[int], Shots) – Number and/or batches of shots for execution. Note that this property is still experimental and under development.
name (str) – Deprecated way to give a name to the quantum script. Avoid using.
_update=True (bool) – Whether or not to set various properties on initialization. Setting
_update=False
reduces computations if the script is only an intermediary step.
See also
Example:
from pennylane.tape import QuantumScript prep = [qml.BasisState(np.array([1,1]), wires=(0,"a"))] ops = [qml.RX(0.432, 0), qml.RY(0.543, 0), qml.CNOT((0,"a")), qml.RX(0.133, "a")] qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))], prep)
>>> list(qscript) [BasisState(array([1, 1]), wires=[0, "a"]), RX(0.432, wires=[0]), RY(0.543, wires=[0]), CNOT(wires=[0, 'a']), RX(0.133, wires=['a']), expval(PauliZ(wires=[0]))] >>> qscript.operations [BasisState(array([1, 1]), wires=[0, "a"]), RX(0.432, wires=[0]), RY(0.543, wires=[0]), CNOT(wires=[0, 'a']), RX(0.133, wires=['a'])] >>> qscript.measurements [expval(PauliZ(wires=[0]))]
Iterating over the quantum script can be done by:
>>> for op in qscript: ... print(op) BasisState(array([1, 1]), wires=[0, "a"]) RX(0.432, wires=[0]) RY(0.543, wires=[0]) CNOT(wires=[0, 'a']) RX(0.133, wires=['a']) expval(PauliZ(wires=[0]))'
Quantum scripts also support indexing and length determination:
>>> qscript[0] BasisState(array([1, 1]), wires=[0, "a"]) >>> len(qscript) 6
Once constructed, the script can be executed directly on a quantum device using the
execute()
function:>>> dev = qml.device('default.qubit', wires=(0,'a')) >>> qml.execute([qscript], dev, gradient_fn=None) [array([-0.77750694])]
Quantum scripts can also store information about the number and batches of executions by setting the
shots
keyword argument. This information is internally stored in apennylane.measurements.Shots
object:>>> s_vec = [1, 1, 2, 2, 2] >>> qscript = QuantumScript([qml.Hadamard(0)], [qml.expval(qml.PauliZ(0))], shots=s_vec) >>> qscript.shots.shot_vector (ShotCopies(shots=1, copies=2), ShotCopies(shots=2, copies=3))
ops
,measurements
, andprep
are converted to lists upon initialization, so those arguments accept any iterable object:>>> qscript = QuantumScript((qml.PauliX(i) for i in range(3))) >>> qscript.circuit [PauliX(wires=[0]), PauliX(wires=[1]), PauliX(wires=[2])]
Attributes
The batch size of the quantum script inferred from the batch sizes of the used operations for parameter broadcasting.
Returns the underlying quantum circuit as a list of operations and measurements.
Alias to
get_parameters()
andset_parameters()
for backwards compatibilities with operations.Returns the gates that diagonalize the measured wires such that they are in the eigenbasis of the circuit observables.
Whether or not to queue the object.
Returns a directed acyclic graph representation of the recorded quantum circuit:
returns an integer hash uniquely representing the quantum script
automatic differentiation interface used by the quantum script (if any)
Returns the measurements on the quantum script.
Name of the quantum script.
Returns the number of trainable parameters on the quantum script.
Returns the expected numeric type of the quantum script result by inspecting its measurements.
Returns the observables on the quantum script.
Returns the state preparations and operations on the quantum script.
The (inferred) output dimension of the quantum script.
Determines if any of the measurements are in the computational basis.
Returns a
Shots
object containing information about the number and batches of shotsResource information about a quantum circuit.
Store or return a list containing the indices of parameters that support differentiability.
-
batch_size
¶ The batch size of the quantum script inferred from the batch sizes of the used operations for parameter broadcasting.
See also
batch_size
for details.- Returns
The batch size of the quantum script if present, else
None
.- Return type
int or None
-
circuit
¶ Returns the underlying quantum circuit as a list of operations and measurements.
The circuit is created with the assumptions that:
The
operations
attribute contains quantum operations and mid-circuit measurements andThe
measurements
attribute contains terminal measurements.
Note that the resulting list could contain MeasurementProcess objects that some devices may not support.
- Returns
the quantum circuit containing quantum operations and measurements
- Return type
list[Operator, MeasurementProcess]
-
data
¶ Alias to
get_parameters()
andset_parameters()
for backwards compatibilities with operations.
-
diagonalizing_gates
¶ Returns the gates that diagonalize the measured wires such that they are in the eigenbasis of the circuit observables.
- Returns
the operations that diagonalize the observables
- Return type
List[Operation]
-
do_queue
= False¶ Whether or not to queue the object. Assumed
False
for a vanilla Quantum Script, but may be True for its child Quantum Tape.
-
graph
¶ Returns a directed acyclic graph representation of the recorded quantum circuit:
>>> ops = [qml.QubitStateVector([0, 1], 0), qml.RX(0.432, 0)] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))]) >>> qscript.graph <pennylane.circuit_graph.CircuitGraph object at 0x7fcc0433a690>
Note that the circuit graph is only constructed once, on first call to this property, and cached for future use.
- Returns
the circuit graph object
- Return type
-
hash
¶ returns an integer hash uniquely representing the quantum script
- Type
int
-
interface
¶ automatic differentiation interface used by the quantum script (if any)
- Type
str, None
-
measurements
¶ Returns the measurements on the quantum script.
- Returns
list of measurement processes
- Return type
list[MeasurementProcess]
Example
>>> ops = [qml.QubitStateVector([0, 1], 0), qml.RX(0.432, 0)] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))]) >>> qscript.measurements [expval(PauliZ(wires=[0]))]
-
name
¶ Name of the quantum script. Raises deprecation warning.
- Returns
The name given to the quantum script upon creation (if any).
- Return type
str or None
-
num_params
¶ Returns the number of trainable parameters on the quantum script.
-
numeric_type
¶ Returns the expected numeric type of the quantum script result by inspecting its measurements.
- Returns
The numeric type corresponding to the result type of the quantum script, or a tuple of such types if the script contains multiple measurements
- Return type
Union[type, Tuple[type]]
Example:
>>> qml.enable_return() >>> dev = qml.device('default.qubit', wires=2) >>> qs = QuantumScript(measurements=[qml.state()]) >>> qs.numeric_type complex
-
observables
¶ Returns the observables on the quantum script.
- Returns
list of observables
- Return type
list[MeasurementProcess, Observable]]
Example
>>> ops = [qml.QubitStateVector([0, 1], 0), qml.RX(0.432, 0)] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))]) >>> qscript.observables [expval(PauliZ(wires=[0]))]
-
operations
¶ Returns the state preparations and operations on the quantum script.
- Returns
quantum operations
- Return type
list[Operator]
>>> ops = [qml.QubitStateVector([0, 1], 0), qml.RX(0.432, 0)] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))]) >>> qscript.operations [QubitStateVector([0, 1], wires=[0]), RX(0.432, wires=[0])]
-
output_dim
¶ The (inferred) output dimension of the quantum script.
-
samples_computational_basis
¶ Determines if any of the measurements are in the computational basis.
-
shots
¶ Returns a
Shots
object containing information about the number and batches of shots- Returns
Object with shot information
- Return type
Shots
-
specs
¶ Resource information about a quantum circuit.
- Returns
dictionaries that contain quantum script specifications
- Return type
dict[str, Union[defaultdict,int]]
- Example
>>> ops = [qml.Hadamard(0), qml.RX(0.26, 1), qml.CNOT((1,0)), ... qml.Rot(1.8, -2.7, 0.2, 0), qml.Hadamard(1), qml.CNOT((0, 1))] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0) @ qml.PauliZ(1))])
Asking for the specs produces a dictionary of useful information about the circuit:
>>> qscript.specs['num_observables'] 1 >>> qscript.specs['gate_sizes'] defaultdict(<class 'int'>, {1: 4, 2: 2}) >>> print(qscript.specs['resources']) wires: 2 gates: 6 depth: 4 shots: Shots(total=None) gate_types: {'Hadamard': 2, 'RX': 1, 'CNOT': 2, 'Rot': 1} gate_sizes: {1: 4, 2: 2}
-
trainable_params
¶ Store or return a list containing the indices of parameters that support differentiability. The indices provided match the order of appearence in the quantum circuit.
Setting this property can help reduce the number of quantum evaluations needed to compute the Jacobian; parameters not marked as trainable will be automatically excluded from the Jacobian computation.
The number of trainable parameters determines the number of parameters passed to
set_parameters()
, and changes the default output size of methodget_parameters()
.Note
For devices that support native backpropagation (such as
default.qubit.tf
anddefault.qubit.autograd
), this property contains no relevant information when using backpropagation to compute gradients.Example
>>> ops = [qml.RX(0.432, 0), qml.RY(0.543, 0), ... qml.CNOT((0,"a")), qml.RX(0.133, "a")] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))]) >>> qscript.trainable_params [0, 1, 2] >>> qscript.trainable_params = [0] # set only the first parameter as trainable >>> qscript.get_parameters() [0.432]
Methods
adjoint
()Create a quantum script that is the adjoint of this one.
copy
([copy_operations])Returns a shallow copy of the quantum script.
draw
([wire_order, show_all_wires, decimals, …])Draw the quantum script as a circuit diagram.
expand
([depth, stop_at, expand_measurements])Expand all operations to a specific depth.
from_queue
(queue[, shots])Construct a QuantumScript from an AnnotatedQueue.
get_operation
(idx)Returns the trainable operation, the operation index and the corresponding operation argument index, for a specified trainable parameter index.
get_parameters
([trainable_only, operations_only])Return the parameters incident on the quantum script operations.
set_parameters
(params[, trainable_only])Set the parameters incident on the quantum script operations.
shape
(device)Produces the output shape of the quantum script by inspecting its measurements and the device used for execution.
to_openqasm
([wires, rotations, measure_all, …])Serialize the circuit as an OpenQASM 2.0 program.
unwrap
()A context manager that unwraps a quantum script with tensor-like parameters to NumPy arrays.
-
adjoint
()[source]¶ Create a quantum script that is the adjoint of this one.
Adjointed quantum scripts are the conjugated and transposed version of the original script. Adjointed ops are equivalent to the inverted operation for unitary gates.
- Returns
the adjointed script
- Return type
QuantumScript
-
copy
(copy_operations=False)[source]¶ Returns a shallow copy of the quantum script.
- Parameters
copy_operations (bool) – If True, the operations are also shallow copied. Otherwise, if False, the copied operations will simply be references to the original operations; changing the parameters of one script will likewise change the parameters of all copies.
- Returns
a shallow copy of the quantum script
- Return type
-
draw
(wire_order=None, show_all_wires=False, decimals=None, max_length=100, show_matrices=True)[source]¶ Draw the quantum script as a circuit diagram. See
tape_text()
for more information.- Parameters
wire_order (Sequence[Any]) – the order (from top to bottom) to print the wires of the circuit
show_all_wires (bool) – If True, all wires, including empty wires, are printed.
decimals (int) – How many decimal points to include when formatting operation parameters. Default
None
will omit parameters from operation labels.max_length (Int) – Maximum length of a individual line. After this length, the diagram will begin anew beneath the previous lines.
show_matrices=True (bool) – show matrix valued parameters below all circuit diagrams
- Returns
the circuit representation of the quantum script
- Return type
str
-
expand
(depth=1, stop_at=None, expand_measurements=False)[source]¶ Expand all operations to a specific depth.
- Parameters
depth (int) – the depth the script should be expanded
stop_at (Callable) – A function which accepts a queue object, and returns
True
if this object should not be expanded. If not provided, all objects that support expansion will be expanded.expand_measurements (bool) – If
True
, measurements will be expanded to basis rotations and computational basis measurements.
Example
Consider the following nested quantum script:
>>> prep = [qml.BasisState(np.array([1, 1]), wires=[0, 'a'])] >>> nested_script = QuantumScript([qml.Rot(0.543, 0.1, 0.4, wires=0)]) >>> ops = [nested_script, qml.CNOT(wires=[0, 'a']), qml.RY(0.2, wires='a')] >>> measurements = [qml.probs(wires=0), qml.probs(wires='a')] >>> qscript = QuantumScript(ops, measurements, prep)
The nested structure is preserved:
>>> qscript.operations [BasisState(tensor([1, 1], requires_grad=True), wires=[0, 'a']), <QuantumScript: wires=[0], params=3>, CNOT(wires=[0, 'a']), RY(0.2, wires=['a'])]
Calling
.expand
will return a script with all nested scripts expanded, resulting in a single script of quantum operations:>>> new_qscript = qscript.expand(depth=2) >>> new_qscript.operations [PauliX(wires=[0]), PauliX(wires=['a']), RZ(0.543, wires=[0]), RY(0.1, wires=[0]), RZ(0.4, wires=[0]), CNOT(wires=[0, 'a']), RY(0.2, wires=['a'])]
-
classmethod
from_queue
(queue, shots=None)[source]¶ Construct a QuantumScript from an AnnotatedQueue.
-
get_operation
(idx)[source]¶ Returns the trainable operation, the operation index and the corresponding operation argument index, for a specified trainable parameter index.
- Parameters
idx (int) – the trainable parameter index
- Returns
tuple containing the corresponding operation, operation index and an integer representing the argument index, for the provided trainable parameter.
- Return type
tuple[Operation, int, int]
-
get_parameters
(trainable_only=True, operations_only=False, **kwargs)[source]¶ Return the parameters incident on the quantum script operations.
The returned parameters are provided in order of appearance on the quantum script.
- Parameters
trainable_only (bool) – if True, returns only trainable parameters
operations_only (bool) – if True, returns only the parameters of the operations excluding parameters to observables of measurements
Example
>>> ops = [qml.RX(0.432, 0), qml.RY(0.543, 0), ... qml.CNOT((0,"a")), qml.RX(0.133, "a")] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))])
By default, all parameters are trainable and will be returned:
>>> qscript.get_parameters() [0.432, 0.543, 0.133]
Setting the trainable parameter indices will result in only the specified parameters being returned:
>>> qscript.trainable_params = [1] # set the second parameter as trainable >>> qscript.get_parameters() [0.543]
The
trainable_only
argument can be set toFalse
to instead return all parameters:>>> qscript.get_parameters(trainable_only=False) [0.432, 0.543, 0.133]
-
set_parameters
(params, trainable_only=True)[source]¶ Set the parameters incident on the quantum script operations.
- Parameters
params (list[float]) – A list of real numbers representing the parameters of the quantum operations. The parameters should be provided in order of appearance in the quantum script.
trainable_only (bool) – if True, set only trainable parameters
Example
>>> ops = [qml.RX(0.432, 0), qml.RY(0.543, 0), ... qml.CNOT((0,"a")), qml.RX(0.133, "a")] >>> qscript = QuantumScript(ops, [qml.expval(qml.PauliZ(0))])
By default, all parameters are trainable and can be modified:
>>> qscript.set_parameters([0.1, 0.2, 0.3]) >>> qscript.get_parameters() [0.1, 0.2, 0.3]
Setting the trainable parameter indices will result in only the specified parameters being modifiable. Note that this only modifies the number of parameters that must be passed.
>>> qscript.trainable_params = [0, 2] # set the first and third parameter as trainable >>> qscript.set_parameters([-0.1, 0.5]) >>> qscript.get_parameters(trainable_only=False) [-0.1, 0.2, 0.5]
The
trainable_only
argument can be set toFalse
to instead set all parameters:>>> qscript.set_parameters([4, 1, 6], trainable_only=False) >>> qscript.get_parameters(trainable_only=False) [4, 1, 6]
-
shape
(device)[source]¶ Produces the output shape of the quantum script by inspecting its measurements and the device used for execution.
Note
The computed shape is not stored because the output shape may be dependent on the device used for execution.
- Parameters
device (pennylane.Device) – the device that will be used for the script execution
- Returns
the output shape(s) of the quantum script result
- Return type
Union[tuple[int], tuple[tuple[int]]]
Examples
>>> qml.enable_return() >>> dev = qml.device('default.qubit', wires=2) >>> qs = QuantumScript(measurements=[qml.state()]) >>> qs.shape(dev) (4,) >>> m = [qml.state(), qml.expval(qml.PauliZ(0)), qml.probs((0,1))] >>> qs = QuantumScript(measurements=m) >>> qs.shape(dev) ((4,), (), (4,))
-
to_openqasm
(wires=None, rotations=True, measure_all=True, precision=None)[source]¶ Serialize the circuit as an OpenQASM 2.0 program.
Measurements are assumed to be performed on all qubits in the computational basis. An optional
rotations
argument can be provided so that output of the OpenQASM circuit is diagonal in the eigenbasis of the quantum script’s observables. The measurement outputs can be restricted to only those specified in the script by settingmeasure_all=False
.Note
The serialized OpenQASM program assumes that gate definitions in
qelib1.inc
are available.- Parameters
wires (Wires or None) – the wires to use when serializing the circuit
rotations (bool) – in addition to serializing user-specified operations, also include the gates that diagonalize the measured wires such that they are in the eigenbasis of the circuit observables.
measure_all (bool) – whether to perform a computational basis measurement on all qubits or just those specified in the script
precision (int) – decimal digits to display for parameters
- Returns
OpenQASM serialization of the circuit
- Return type
str
-
unwrap
()[source]¶ A context manager that unwraps a quantum script with tensor-like parameters to NumPy arrays.
- Returns
the unwrapped quantum script
- Return type
QuantumScript
Example
>>> with tf.GradientTape(): ... qscript = QuantumScript([qml.RX(tf.Variable(0.1), 0), ... qml.RY(tf.constant(0.2), 0), ... qml.RZ(tf.Variable(0.3), 0)]) ... with qscript.unwrap(): ... print("Trainable params:", qscript.trainable_params) ... print("Unwrapped params:", qscript.get_parameters()) Trainable params: [0, 2] Unwrapped params: [0.1, 0.3] >>> qscript.get_parameters() [<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.1>, <tf.Tensor: shape=(), dtype=float32, numpy=0.2>, <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.3>]