catalyst.mitigate_with_zne¶
- mitigate_with_zne(fn=None, *, scale_factors, extrapolate=None, extrapolate_kwargs=None, folding='global')[source]¶
A
qjit()
compatible error mitigation of an input circuit using zero-noise extrapolation.Error mitigation is a precursor to error correction and is compatible with near-term quantum devices. It aims to lower the impact of noise when evaluating a circuit on a quantum device by evaluating multiple variations of the circuit and post-processing the results into a noise-reduced estimate. This transform implements the zero-noise extrapolation (ZNE) method originally introduced by Temme et al. and Li et al..
- Parameters
fn (qml.QNode) – the circuit to be mitigated.
scale_factors (list[int]) – the range of noise scale factors used.
extrapolate (Callable) – A qjit-compatible function taking two sequences as arguments (scale factors, and results), and returning a float by performing a fitting procedure. By default, perfect polynomial fitting
polynomial_extrapolate()
will be used, theexponential_extrapolate()
function from PennyLane may also be used.extrapolate_kwargs (dict[str, Any]) – Keyword arguments to be passed to the extrapolation function.
folding (str) – Unitary folding technique to be used to scale the circuit. Possible values: - global: the global unitary of the input circuit is folded - local-all: per-gate folding sequences replace original gates in-place in the circuit
- Returns
A callable object that computes the mitigated of the wrapped
QNode
for the given arguments.- Return type
Callable
Example:
For example, given a noisy device (such as noisy hardware available through Amazon Braket):
# replace "noisy.device" with your noisy device dev = qml.device("noisy.device", wires=2) @qml.qnode(device=dev) def circuit(x, n): @for_loop(0, n, 1) def loop_rx(i): qml.RX(x, wires=0) loop_rx() qml.Hadamard(wires=0) qml.RZ(x, wires=0) loop_rx() qml.RZ(x, wires=0) qml.CNOT(wires=[1, 0]) qml.Hadamard(wires=1) return qml.expval(qml.PauliY(wires=0)) @qjit def mitigated_circuit(args, n): s = [1, 3, 5] return mitigate_with_zne(circuit, scale_factors=s)(args, n)
Alternatively the mitigate_with_zne function can be applied directly on a qjitted function containing
QNode
, the mitigation will be applied on eachQNode
individually.Exponential extrapolation can also be performed via the
exponential_extrapolate()
function from PennyLane:from pennylane.transforms import exponential_extrapolate dev = qml.device("lightning.qubit", wires=2, shots=100000) @qml.qnode(dev) def circuit(weights): qml.StronglyEntanglingLayers(weights, wires=[0, 1]) return qml.expval(qml.PauliZ(0) @ qml.PauliZ(1)) @qjit def workflow(weights, s): zne_circuit = mitigate_with_zne( circuit, scale_factors=s, extrapolate=exponential_extrapolate ) return zne_circuit(weights)
>>> weights = jnp.ones([3, 2, 3]) >>> scale_factors = [1, 3, 5] >>> workflow(weights, scale_factors) Array(-0.19946598, dtype=float64)