Program Listing for File ApplyGeneratorIsingZZ.hpp

Return to documentation for file (pennylane_lightning/core/src/simulators/lightning_qubit/gates/cpu_kernels/avx_common/ApplyGeneratorIsingZZ.hpp)

// Copyright 2023 Xanadu Quantum Technologies Inc.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//     http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "AVXConceptType.hpp"
#include "AVXUtil.hpp"
#include "BitUtil.hpp"
#include "Permutation.hpp"
#include "Util.hpp"

#include <complex>

namespace Pennylane::LightningQubit::Gates::AVXCommon {
template <typename PrecisionT, std::size_t packed_size>
struct ApplyGeneratorIsingZZ {
    using Precision = PrecisionT;
    using PrecisionAVXConcept =
        typename AVXConcept<PrecisionT, packed_size>::Type;

    constexpr static std::size_t packed_size_ = packed_size;
    constexpr static bool symmetric = true;

    template <size_t rev_wire0, std::size_t rev_wire1>
    static auto applyInternalInternal(std::complex<PrecisionT> *arr,
                                      std::size_t num_qubits,
                                      [[maybe_unused]] bool adj) -> PrecisionT {
        using namespace Permutation;

        const auto signs = toParity<Precision, packed_size>([](size_t idx) {
            return (((idx >> rev_wire0) & std::size_t{1U}) ^
                    ((idx >> rev_wire1) & std::size_t{1U}));
        });
        PL_LOOP_PARALLEL(1)
        for (size_t n = 0; n < exp2(num_qubits); n += packed_size / 2) {
            const auto v = PrecisionAVXConcept::load(arr + n);
            PrecisionAVXConcept::store(arr + n, signs * v);
        }
        return -static_cast<PrecisionT>(
            0.5); // NOLINT(readability-magic-numbers)
    }

    template <size_t min_rev_wire>
    static auto applyInternalExternal(std::complex<PrecisionT> *arr,
                                      std::size_t num_qubits,
                                      std::size_t max_rev_wire,
                                      [[maybe_unused]] bool adj) -> PrecisionT {
        using namespace Permutation;

        const std::size_t max_rev_wire_shift =
            (static_cast<std::size_t>(1U) << max_rev_wire);
        const std::size_t max_wire_parity = fillTrailingOnes(max_rev_wire);
        const std::size_t max_wire_parity_inv =
            fillLeadingOnes(max_rev_wire + 1);

        const auto sign0 = internalParity<Precision, packed_size>(min_rev_wire);
        const auto sign1 =
            -internalParity<Precision, packed_size>(min_rev_wire);
        PL_LOOP_PARALLEL(1)
        for (size_t k = 0; k < exp2(num_qubits - 1); k += packed_size / 2) {
            const std::size_t i0 =
                ((k << 1U) & max_wire_parity_inv) | (max_wire_parity & k);
            const std::size_t i1 = i0 | max_rev_wire_shift;

            const auto v0 = PrecisionAVXConcept::load(arr + i0);
            const auto v1 = PrecisionAVXConcept::load(arr + i1);

            PrecisionAVXConcept::store(arr + i0, v0 * sign0);
            PrecisionAVXConcept::store(arr + i1, v1 * sign1);
        }
        return -static_cast<PrecisionT>(
            0.5); // NOLINT(readability-magic-numbers)
    }

    static auto applyExternalExternal(std::complex<PrecisionT> *arr,
                                      const std::size_t num_qubits,
                                      const std::size_t rev_wire0,
                                      const std::size_t rev_wire1,
                                      [[maybe_unused]] bool adj) -> PrecisionT {
        using namespace Permutation;

        const std::size_t rev_wire0_shift = static_cast<std::size_t>(1U)
                                            << rev_wire0;
        const std::size_t rev_wire1_shift = static_cast<std::size_t>(1U)
                                            << rev_wire1;

        const std::size_t rev_wire_min = std::min(rev_wire0, rev_wire1);
        const std::size_t rev_wire_max = std::max(rev_wire0, rev_wire1);

        const std::size_t parity_low = fillTrailingOnes(rev_wire_min);
        const std::size_t parity_high = fillLeadingOnes(rev_wire_max + 1);
        const std::size_t parity_middle =
            fillLeadingOnes(rev_wire_min + 1) & fillTrailingOnes(rev_wire_max);
        PL_LOOP_PARALLEL(1)
        for (size_t k = 0; k < exp2(num_qubits - 2); k += packed_size / 2) {
            const std::size_t i00 = ((k << 2U) & parity_high) |
                                    ((k << 1U) & parity_middle) |
                                    (k & parity_low);

            const std::size_t i10 = i00 | rev_wire1_shift;
            const std::size_t i01 = i00 | rev_wire0_shift;

            const auto v01 = PrecisionAVXConcept::load(arr + i01); // 01
            const auto v10 = PrecisionAVXConcept::load(arr + i10); // 10

            PrecisionAVXConcept::store(arr + i01, -v01);
            PrecisionAVXConcept::store(arr + i10, -v10);
        }
        return -static_cast<PrecisionT>(
            0.5); // NOLINT(readability-magic-numbers)
    }
};
} // namespace Pennylane::LightningQubit::Gates::AVXCommon