Template Class Measurements

Inheritance Relationships

Base Type

  • public MeasurementsBase< StateVectorT, Measurements< StateVectorT > >

Class Documentation

template<class StateVectorT>
class Measurements : public MeasurementsBase<StateVectorT, Measurements<StateVectorT>>

Observable’s Measurement Class.

This class couples with a statevector to performs measurements. Observables are defined by its operator(matrix), the observable class, or through a string-based function dispatch.

Template Parameters

StateVectorT – type of the statevector to be measured.

Public Functions

inline explicit Measurements(StateVectorT &statevector)
inline auto probs(const std::vector<std::size_t> &wires) -> std::vector<PrecisionT>

Utility method for probability calculation using given wires.

Parameters

wires – List of wires to return probabilities for in lexicographical order.

Returns

std::vector<PrecisionT>

inline auto probs() -> std::vector<PrecisionT>

Utility method for probability calculation for a full wires.

Returns

std::vector<PrecisionT>

inline std::vector<PrecisionT> probs(const Observable<StateVectorT> &obs, std::size_t num_shots = 0)

Probabilities to measure rotated basis states.

Parameters
  • obs – An observable object.

  • num_shots – Number of shots(Optional).If specified with a non-zero number, shot-noise will be added to return probabilities

Returns

Floating point std::vector with probabilities in lexicographic order.

inline std::vector<PrecisionT> probs(std::size_t num_shots)

Probabilities with shot-noise.

Parameters

num_shots – Number of shots.

Returns

Floating point std::vector with probabilities.

inline std::vector<PrecisionT> probs(const std::vector<std::size_t> &wires, std::size_t num_shots)

Probabilities with shot-noise for a subset of the full system.

Parameters
  • num_shots – Number of shots.

  • wires – Wires will restrict probabilities to a subset of the full system.

Returns

Floating point std::vector with probabilities.

inline auto generate_samples(std::size_t num_samples) -> std::vector<std::size_t>

Utility method for samples.

Parameters

num_samples – Number of Samples

Returns

std::vector<std::size_t> A 1-d array storing the samples. Each sample has a length equal to the number of qubits. Each sample can be accessed using the stride sample_id*num_qubits, where sample_id is a number between 0 and num_samples-1.

template<class index_type>
inline auto expval(const index_type *csrOffsets_ptr, const int64_t csrOffsets_size, const index_type *columns_ptr, const std::complex<PrecisionT> *values_ptr, const int64_t numNNZ) -> PrecisionT

expval(H) calculation with cuSparseSpMV.

Template Parameters

index_type – Integer type used as indices of the sparse matrix.

Parameters
  • csr_Offsets_ptr – Pointer to the array of row offsets of the sparse matrix. Array of size csrOffsets_size.

  • csrOffsets_size – Number of Row offsets of the sparse matrix.

  • columns_ptr – Pointer to the array of column indices of the sparse matrix. Array of size numNNZ

  • values_ptr – Pointer to the array of the non-zero elements

  • numNNZ – Number of non-zero elements.

Returns

auto Expectation value.

inline auto expval(const std::string &operation, const std::vector<std::size_t> &wires) -> PrecisionT

Expected value of an observable.

Parameters
  • operation – String with the operator name.

  • wires – Wires where to apply the operator.

Returns

Floating point expected value of the observable.

template<typename op_type>
inline auto expval(const std::vector<op_type> &operations_list, const std::vector<std::vector<std::size_t>> &wires_list) -> std::vector<PrecisionT>

Expected value for a list of observables.

Template Parameters

op_type – Operation type.

Parameters
  • operations_list – List of operations to measure.

  • wires_list – List of wires where to apply the operators.

Returns

Floating point std::vector with expected values for the observables.

inline auto expval(const Observable<StateVectorT> &ob) -> PrecisionT

Calculate expectation value for a general Observable.

Parameters

ob – Observable.

Returns

Expectation value with respect to the given observable.

inline auto expval(const Observable<StateVectorT> &obs, const std::size_t &num_shots, const std::vector<std::size_t> &shot_range) -> PrecisionT

Expectation value for a Observable with shots.

Parameters
  • obs – Observable.

  • num_shots – Number of shots used to generate samples

  • shot_range – The range of samples to use. All samples are used by default.

Returns

Floating point expected value of the observable.

inline auto expval(const std::vector<ComplexT> &matrix, const std::vector<std::size_t> &wires) -> PrecisionT

Expected value of an observable.

Parameters
  • matrix – Square matrix in row-major order.

  • wires – Wires where to apply the operator.

Returns

Floating point expected value of the observable.

inline auto expval(const std::vector<std::string> &pauli_words, const std::vector<std::vector<std::size_t>> &target_wires, const std::complex<PrecisionT> *coeffs) -> PrecisionT

Expected value of an observable.

Parameters
  • pauli_words – Vector of operators’ name strings.

  • target_wires – Vector of wires where to apply the operator.

  • coeffs – Complex buffer of size |pauli_words|

Returns

Floating point expected value of the observable.

inline auto var(const Observable<StateVectorT> &ob) -> PrecisionT

Calculate variance of a general observable.

Parameters

ob – An observable object.

Returns

Variance with respect to the given observable.

inline auto var(const std::string &operation, const std::vector<std::size_t> &wires) -> PrecisionT

Variance of an observable.

Parameters
  • operation – String with the operator name.

  • wires – Wires where to apply the operator.

Returns

Floating point with the variance of the observable.

inline auto var(const std::vector<ComplexT> &matrix, const std::vector<std::size_t> &wires) -> PrecisionT

Variance of an observable.

Parameters
  • matrix – Square matrix in row-major order.

  • wires – Wires where to apply the operator.

Returns

Floating point with the variance of the observable.

template<typename op_type>
inline auto var(const std::vector<op_type> &operations_list, const std::vector<std::vector<std::size_t>> &wires_list) -> std::vector<PrecisionT>

Variance for a list of observables.

Template Parameters

op_type – Operation type.

Parameters
  • operations_list – List of operations to measure. Square matrix in row-major order or string with the operator name.

  • wires_list – List of wires where to apply the operators.

Returns

Floating point std::vector with the variance of the observables.

template<class index_type>
inline PrecisionT var(const index_type *csrOffsets_ptr, const int64_t csrOffsets_size, const index_type *columns_ptr, const std::complex<PrecisionT> *values_ptr, const int64_t numNNZ)

Variance of a sparse Hamiltonian.

Template Parameters

index_type – integer type used as indices of the sparse matrix.

Parameters
  • row_map_ptr – row_map array pointer. The j element encodes the number of non-zeros above row j.

  • row_map_size – row_map array size.

  • entries_ptr – pointer to an array with column indices of the non-zero elements.

  • values_ptr – pointer to an array with the non-zero elements.

  • numNNZ – number of non-zero elements.

Returns

Floating point with the variance of the sparse Hamiltonian.

inline auto var(const Observable<StateVectorT> &obs, const std::size_t &num_shots) -> PrecisionT

Calculate the variance for an observable with the number of shots.

Parameters
  • obs – An observable object.

  • num_shots – Number of shots.

Returns

Variance of the given observable.