AerDevice

class pennylane_qiskit.AerDevice(wires, shots=1024, backend='aer_simulator', method='automatic', **kwargs)[source]

Bases: QiskitDeviceLegacy

A PennyLane device for the C++ Qiskit Aer simulator.

Please refer to the Qiskit documentation for further information on the noise model, backend options and transpile options.

A range of backend_options that will be passed to the simulator and a range of transpile options can be given as kwargs.

For more information on backends, please visit the qiskit_aer documentation.

Parameters:
  • wires (int or Iterable[Number, str]]) – Number of subsystems represented by the device, or iterable that contains unique labels for the subsystems as numbers (i.e., [-1, 0, 2]) or strings (['ancilla', 'q1', 'q2']).

  • backend (str) – the desired backend

  • method (str) – The desired simulation method. A list of supported simulation methods can be returned using qiskit_aer.AerSimulator().available_methods(), or by referring to the AerSimulator documentation.

  • shots (int or None) – number of circuit evaluations/random samples used to estimate expectation values and variances of observables. For statevector backends, setting to None results in computing statistics like expectation values and variances analytically.

Keyword Arguments:
  • name (str) – The name of the circuit. Default 'circuit'.

  • compile_backend (BaseBackend) – The backend used for compilation. If you wish to simulate a device compliant circuit, you can specify a backend here.

  • noise_model (NoiseModel) – NoiseModel Object from qiskit_aer.noise

analytic

Whether shots is None or not.

analytic_warning_message

author

backend

The Qiskit backend object.

circuit_hash

The hash of the circuit upon the last execution.

measurement_map

Mapping used to override the logic of measurement processes.

name

num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

obs_queue

The observables to be measured and returned.

observables

op_queue

The operation queue to be applied.

operations

parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

pennylane_requires

plugin_version

short_name

shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating QNodes.

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Get state of the device

stopping_condition

Returns the stopping condition for the device.

version

wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

analytic

Whether shots is None or not. Kept for backwards compatability.

analytic_warning_message = 'The analytic calculation of expectations, variances and probabilities is only supported on statevector backends, not on the {}. Such statistics obtained from this device are estimates based on samples.'
author = 'Xanadu'
backend

The Qiskit backend object.

Returns:

Qiskit backend object.

Return type:

qiskit.providers.backend

circuit_hash

The hash of the circuit upon the last execution.

This can be used by devices in apply() for parametric compilation.

measurement_map = {}

Mapping used to override the logic of measurement processes. The dictionary maps a measurement class to a string containing the name of a device’s method that overrides the measurement process. The method defined by the device should have the following arguments:

  • measurement (MeasurementProcess): measurement to override

  • shot_range (tuple[int]): 2-tuple of integers specifying the range of samples

    to use. If not specified, all samples are used.

  • bin_size (int): Divides the shot range into bins of size bin_size, and

    returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.

Note

When overriding the logic of a MeasurementTransform, the method defined by the device should only have a single argument:

  • tape: quantum tape to transform

Example:

Let’s create a device that inherits from DefaultQubitLegacy and overrides the logic of the qml.sample measurement. To do so we will need to update the measurement_map dictionary:

class NewDevice(DefaultQubitLegacy):
    def __init__(self, wires, shots):
        super().__init__(wires=wires, shots=shots)
        self.measurement_map[SampleMP] = "sample_measurement"

    def sample_measurement(self, measurement, shot_range=None, bin_size=None):
        return 2
>>> dev = NewDevice(wires=2, shots=1000)
>>> @qml.qnode(dev)
... def circuit():
...     return qml.sample()
>>> circuit()
tensor(2, requires_grad=True)
name = 'Qiskit PennyLane plugin'
num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

Returns:

number of executions

Return type:

int

obs_queue

The observables to be measured and returned.

Note that this property can only be accessed within the execution context of execute().

Raises:

ValueError – if outside of the execution context

Returns:

list[~.operation.Observable]

observables = {'Hadamard', 'Hermitian', 'Identity', 'PauliX', 'PauliY', 'PauliZ', 'Projector'}
op_queue

The operation queue to be applied.

Note that this property can only be accessed within the execution context of execute().

Raises:

ValueError – if outside of the execution context

Returns:

list[~.operation.Operation]

operations = {'Adjoint(GlobalPhase)', 'Adjoint(S)', 'Adjoint(SX)', 'Adjoint(T)', 'Barrier', 'CCZ', 'CH', 'CNOT', 'CPhase', 'CRX', 'CRY', 'CRZ', 'CSWAP', 'CY', 'CZ', 'ECR', 'Hadamard', 'ISWAP', 'Identity', 'IsingXX', 'IsingYY', 'IsingZZ', 'PauliX', 'PauliY', 'PauliZ', 'PhaseShift', 'QubitUnitary', 'RX', 'RY', 'RZ', 'S', 'SWAP', 'SX', 'StatePrep', 'T', 'Toffoli', 'U1', 'U2', 'U3'}
parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

Note that this property can only be accessed within the execution context of execute().

Raises:

ValueError – if outside of the execution context

Returns:

the mapping

Return type:

dict[int->list[ParameterDependency]]

pennylane_requires = '>=0.38.0'
plugin_version = '0.40.0-dev'
short_name = 'qiskit.aer'
shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating QNodes.

Example

>>> dev = qml.device("default.qubit.legacy", wires=2, shots=[3, 1, 2, 2, 2, 2, 6, 1, 1, 5, 12, 10, 10])
>>> dev.shots
57
>>> dev.shot_vector
[ShotCopies(3 shots x 1),
 ShotCopies(1 shots x 1),
 ShotCopies(2 shots x 4),
 ShotCopies(6 shots x 1),
 ShotCopies(1 shots x 2),
 ShotCopies(5 shots x 1),
 ShotCopies(12 shots x 1),
 ShotCopies(10 shots x 2)]

The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot integer is repeated.

Type:

list[ShotCopies]

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Get state of the device

stopping_condition

Returns the stopping condition for the device. The returned function accepts a queuable object (including a PennyLane operation and observable) and returns True if supported by the device.

Type:

.BooleanFn

version = '0.40.0-dev'
wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

access_state([wires])

Check that the device has access to an internal state and return it if available.

active_wires(operators)

Returns the wires acted on by a set of operators.

adjoint_jacobian(tape[, starting_state, ...])

Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

analytic_probability([wires])

Get the analytic probability of the device

apply(operations, **kwargs)

Build the circuit object and apply the operations

apply_operations(operations)

Apply the circuit operations.

batch_execute(circuits[, timeout])

Batch execute the circuits on the device

batch_transform(circuit)

Apply a differentiable batch transform for preprocessing a circuit prior to execution.

capabilities()

Get the capabilities of this device class.

check_validity(queue, observables)

Checks whether the operations and observables in queue are all supported by the device.

classical_shadow(obs, circuit)

Returns the measured bits and recipes in the classical shadow protocol.

compile()

Compile the quantum circuit to target the provided compile_backend.

compile_circuits(circuits)

Compiles multiple circuits one after the other.

create_circuit_object(operations, **kwargs)

Builds the circuit objects based on the operations and measurements specified to apply.

custom_expand(fn)

Register a custom expansion function for the device.

default_expand_fn(circuit[, max_expansion])

Method for expanding or decomposing an input circuit.

define_wire_map(wires)

Create the map from user-provided wire labels to the wire labels used by the device.

density_matrix(wires)

Returns the reduced density matrix over the given wires.

estimate_probability([wires, shot_range, ...])

Return the estimated probability of each computational basis state using the generated samples.

execute(circuit, **kwargs)

It executes a queue of quantum operations on the device and then measure the given observables.

execute_and_gradients(circuits[, method])

Execute a batch of quantum circuits on the device, and return both the results and the gradients.

execution_context()

The device execution context used during calls to execute().

expand_fn(circuit[, max_expansion])

Method for expanding or decomposing an input circuit.

expval(observable[, shot_range, bin_size])

Returns the expectation value of observable on specified wires.

generate_basis_states(num_wires[, dtype])

Generates basis states in binary representation according to the number of wires specified.

generate_samples([circuit])

Returns the computational basis samples generated for all wires.

gradients(circuits[, method])

Return the gradients of a batch of quantum circuits on the device.

map_wires(wires)

Map the wire labels of wires using this device's wire map.

marginal_prob(prob[, wires])

Return the marginal probability of the computational basis states by summing the probabiliites on the non-specified wires.

mutual_info(wires0, wires1, log_base)

Returns the mutual information prior to measurement:

order_wires(subset_wires)

Given some subset of device wires return a Wires object with the same wires; sorted according to the device wire map.

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

probability([wires, shot_range, bin_size])

Return either the analytic probability or estimated probability of each computational basis state.

process_kwargs(kwargs)

Processing the keyword arguments that were provided upon device initialization.

qubit_state_vector_check(operation)

Input check for the StatePrepBase operations.

reset()

Reset the Qiskit backend device

run(qcirc)

Run the compiled circuit and query the result.

sample(observable[, shot_range, bin_size, ...])

Return samples of an observable.

sample_basis_states(number_of_states, ...)

Sample from the computational basis states based on the state probability.

set_transpile_args(**kwargs)

The transpile argument setter.

shadow_expval(obs, circuit)

Compute expectation values using classical shadows in a differentiable manner.

shot_vec_statistics(circuit)

Process measurement results from circuit execution using a device with a shot vector and return statistics.

states_to_binary(samples, num_wires[, dtype])

Convert basis states from base 10 to binary representation.

statistics(circuit[, shot_range, bin_size])

Process measurement results from circuit execution and return statistics.

supports_observable(observable)

Checks if an observable is supported by this device. Raises a ValueError,

supports_operation(operation)

Checks if an operation is supported by this device.

var(observable[, shot_range, bin_size])

Returns the variance of observable on specified wires.

vn_entropy(wires, log_base)

Returns the Von Neumann entropy prior to measurement.

access_state(wires=None)

Check that the device has access to an internal state and return it if available.

Parameters:

wires (Wires) – wires of the reduced system

Raises:

QuantumFunctionError – if the device is not capable of returning the state

Returns:

the state or the density matrix of the device

Return type:

array or tensor

static active_wires(operators)

Returns the wires acted on by a set of operators.

Parameters:

operators (list[Operation]) – operators for which we are gathering the active wires

Returns:

wires activated by the specified operators

Return type:

Wires

adjoint_jacobian(tape: QuantumScript, starting_state=None, use_device_state=False)

Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

After a forward pass, the circuit is reversed by iteratively applying adjoint gates to scan backwards through the circuit.

Note

The adjoint differentiation method has the following restrictions:

  • As it requires knowledge of the statevector, only statevector simulator devices can be used.

  • Only expectation values are supported as measurements.

  • Cannot differentiate with respect to state-prep operations.

  • Does not work for parametrized observables like Hamiltonian or Hermitian.

Parameters:

tape (.QuantumTape) – circuit that the function takes the gradient of

Keyword Arguments:
  • starting_state (tensor_like) – post-forward pass state to start execution with. It should be complex-valued. Takes precedence over use_device_state.

  • use_device_state (bool) – use current device state to initialize. A forward pass of the same circuit should be the last thing the device has executed. If a starting_state is provided, that takes precedence.

Returns:

the derivative of the tape with respect to trainable parameters. Dimensions are (len(observables), len(trainable_params)).

Return type:

array or tuple[array]

Raises:

QuantumFunctionError – if the input tape has measurements that are not expectation values or contains a multi-parameter operation aside from Rot

analytic_probability(wires=None)

Get the analytic probability of the device

apply(operations, **kwargs)

Build the circuit object and apply the operations

apply_operations(operations)

Apply the circuit operations.

This method serves as an auxiliary method to apply().

Parameters:

operations (List[pennylane.Operation]) – operations to be applied

Returns:

a list of quantum circuit objects that

specify the corresponding operations

Return type:

list[QuantumCircuit]

batch_execute(circuits, timeout: int | None = None)

Batch execute the circuits on the device

batch_transform(circuit: QuantumScript)

Apply a differentiable batch transform for preprocessing a circuit prior to execution. This method is called directly by the QNode, and should be overwritten if the device requires a transform that generates multiple circuits prior to execution.

By default, this method contains logic for generating multiple circuits, one per term, of a circuit that terminates in expval(H), if the underlying device does not support Hamiltonian expectation values, or if the device requires finite shots.

Warning

This method will be tracked by autodifferentiation libraries, such as Autograd, JAX, TensorFlow, and Torch. Please make sure to use qml.math for autodiff-agnostic tensor processing if required.

Parameters:

circuit (.QuantumTape) – the circuit to preprocess

Returns:

Returns a tuple containing the sequence of circuits to be executed, and a post-processing function to be applied to the list of evaluated circuit results.

Return type:

tuple[Sequence[.QuantumTape], callable]

classmethod capabilities()

Get the capabilities of this device class.

Inheriting classes that change or add capabilities must override this method, for example via

@classmethod
def capabilities(cls):
    capabilities = super().capabilities().copy()
    capabilities.update(
        supports_a_new_capability=True,
    )
    return capabilities
Returns:

results

Return type:

dict[str->*]

check_validity(queue, observables)

Checks whether the operations and observables in queue are all supported by the device.

Parameters:
  • queue (Iterable[Operation]) – quantum operation objects which are intended to be applied on the device

  • observables (Iterable[Observable]) – observables which are intended to be evaluated on the device

Raises:

DeviceError – if there are operations in the queue or observables that the device does not support

classical_shadow(obs, circuit)

Returns the measured bits and recipes in the classical shadow protocol.

The protocol is described in detail in the classical shadows paper. This measurement process returns the randomized Pauli measurements (the recipes) that are performed for each qubit and snapshot as an integer:

  • 0 for Pauli X,

  • 1 for Pauli Y, and

  • 2 for Pauli Z.

It also returns the measurement results (the bits); 0 if the 1 eigenvalue is sampled, and 1 if the -1 eigenvalue is sampled.

The device shots are used to specify the number of snapshots. If T is the number of shots and n is the number of qubits, then both the measured bits and the Pauli measurements have shape (T, n).

This implementation is device-agnostic and works by executing single-shot tapes containing randomized Pauli observables. Devices should override this if they can offer cleaner or faster implementations.

See also

classical_shadow()

Parameters:
  • obs (ClassicalShadowMP) – The classical shadow measurement process

  • circuit (QuantumTape) – The quantum tape that is being executed

Returns:

A tensor with shape (2, T, n), where the first row represents the measured bits and the second represents the recipes used.

Return type:

tensor_like[int]

compile()

Compile the quantum circuit to target the provided compile_backend.

If compile_backend is None, then the target is simply the backend.

compile_circuits(circuits)

Compiles multiple circuits one after the other.

Parameters:

circuits (list[.tapes.QuantumTape]) – the circuits to be compiled

Returns:

the list of compiled circuits

Return type:

list[QuantumCircuit]

create_circuit_object(operations, **kwargs)

Builds the circuit objects based on the operations and measurements specified to apply.

Parameters:

operations (list[Operation]) – operations to apply to the device

Keyword Arguments:

rotations (list[Operation]) – Operations that rotate the circuit pre-measurement into the eigenbasis of the observables.

custom_expand(fn)

Register a custom expansion function for the device.

Example

dev = qml.device("default.qubit.legacy", wires=2)

@dev.custom_expand
def my_expansion_function(self, tape, max_expansion=10):
    ...
    # can optionally call the default device expansion
    tape = self.default_expand_fn(tape, max_expansion=max_expansion)
    return tape

The custom device expansion function must have arguments self (the device object), tape (the input circuit to transform and execute), and max_expansion (the number of times the circuit should be expanded).

The default default_expand_fn() method of the original device may be called. It is highly recommended to call this before returning, to ensure that the expanded circuit is supported on the device.

default_expand_fn(circuit, max_expansion=10)

Method for expanding or decomposing an input circuit. This method should be overwritten if custom expansion logic is required.

By default, this method expands the tape if:

  • state preparation operations are called mid-circuit,

  • nested tapes are present,

  • any operations are not supported on the device, or

  • multiple observables are measured on the same wire.

Parameters:
  • circuit (.QuantumTape) – the circuit to expand.

  • max_expansion (int) – The number of times the circuit should be expanded. Expansion occurs when an operation or measurement is not supported, and results in a gate decomposition. If any operations in the decomposition remain unsupported by the device, another expansion occurs.

Returns:

The expanded/decomposed circuit, such that the device will natively support all operations.

Return type:

.QuantumTape

define_wire_map(wires)

Create the map from user-provided wire labels to the wire labels used by the device.

The default wire map maps the user wire labels to wire labels that are consecutive integers.

However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-integer wire labels.

Parameters:

wires (Wires) – user-provided wires for this device

Returns:

dictionary specifying the wire map

Return type:

OrderedDict

Example

>>> dev = device('my.device', wires=['b', 'a'])
>>> dev.wire_map()
OrderedDict( [(Wires(['a']), Wires([0])), (Wires(['b']), Wires([1]))])
density_matrix(wires)

Returns the reduced density matrix over the given wires.

Parameters:

wires (Wires) – wires of the reduced system

Returns:

complex array of shape (2 ** len(wires), 2 ** len(wires)) representing the reduced density matrix of the state prior to measurement.

Return type:

array[complex]

estimate_probability(wires=None, shot_range=None, bin_size=None)

Return the estimated probability of each computational basis state using the generated samples.

Parameters:
  • wires (Iterable[Number, str], Number, str, Wires) – wires to calculate marginal probabilities for. Wires not provided are traced out of the system.

  • shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use. If not specified, all samples are used.

  • bin_size (int) – Divides the shot range into bins of size bin_size, and returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.

Returns:

list of the probabilities

Return type:

array[float]

execute(circuit, **kwargs)

It executes a queue of quantum operations on the device and then measure the given observables.

For plugin developers: instead of overwriting this, consider implementing a suitable subset of

Additional keyword arguments may be passed to this method that can be utilised by apply(). An example would be passing the QNode hash that can be used later for parametric compilation.

Parameters:

circuit (QuantumTape) – circuit to execute on the device

Raises:

QuantumFunctionError – if the value of return_type is not supported

Returns:

measured value(s)

Return type:

array[float]

execute_and_gradients(circuits, method='jacobian', **kwargs)

Execute a batch of quantum circuits on the device, and return both the results and the gradients.

The circuits are represented by tapes, and they are executed one-by-one using the device’s execute method. The results and the corresponding Jacobians are collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently run multiple circuits on a backend, for example using parallel and/or asynchronous executions, and return both the results and the Jacobians.

Parameters:
  • circuits (list[.tape.QuantumTape]) – circuits to execute on the device

  • method (str) – the device method to call to compute the Jacobian of a single circuit

  • **kwargs – keyword argument to pass when calling method

Returns:

Tuple containing list of measured value(s) and list of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type:

tuple[list[array[float]], list[array[float]]]

execution_context()

The device execution context used during calls to execute().

You can overwrite this function to return a context manager in case your quantum library requires that; all operations and method calls (including apply() and expval()) are then evaluated within the context of this context manager (see the source of execute() for more details).

expand_fn(circuit, max_expansion=10)

Method for expanding or decomposing an input circuit. Can be the default or a custom expansion method, see Device.default_expand_fn() and Device.custom_expand() for more details.

Parameters:
  • circuit (.QuantumTape) – the circuit to expand.

  • max_expansion (int) – The number of times the circuit should be expanded. Expansion occurs when an operation or measurement is not supported, and results in a gate decomposition. If any operations in the decomposition remain unsupported by the device, another expansion occurs.

Returns:

The expanded/decomposed circuit, such that the device will natively support all operations.

Return type:

.QuantumTape

expval(observable, shot_range=None, bin_size=None)

Returns the expectation value of observable on specified wires.

Note: all arguments accept _lists_, which indicate a tensor product of observables.

Parameters:
  • observable (str or list[str]) – name of the observable(s)

  • wires (Wires) – wires the observable(s) are to be measured on

  • par (tuple or list[tuple]]) – parameters for the observable(s)

Returns:

expectation value \(\expect{A} = \bra{\psi}A\ket{\psi}\)

Return type:

float

static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)

Generates basis states in binary representation according to the number of wires specified.

The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster) than the approach using itertools.product, at the expense of using slightly more memory.

Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32 bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only for fewer wires.

For smaller number of wires speed is comparable to the next approach (using itertools.product), hence we resort to that one for testing purposes.

Parameters:
  • num_wires (int) – the number wires

  • dtype=np.uint32 (type) – the data type of the arrays to use

Returns:

the sampled basis states

Return type:

array[int]

generate_samples(circuit=None)

Returns the computational basis samples generated for all wires.

Note that PennyLane uses the convention \(|q_0,q_1,\dots,q_{N-1}\rangle\) where \(q_0\) is the most significant bit.

Parameters:

circuit (str or None) – the name of the circuit to get the state for

Returns:

array of samples in the shape (dev.shots, dev.num_wires)

Return type:

array[complex]

gradients(circuits, method='jacobian', **kwargs)

Return the gradients of a batch of quantum circuits on the device.

The gradient method method is called sequentially for each circuit, and the corresponding Jacobians are collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently compute the gradient of multiple circuits on a backend, for example using parallel and/or asynchronous executions.

Parameters:
  • circuits (list[.tape.QuantumTape]) – circuits to execute on the device

  • method (str) – the device method to call to compute the Jacobian of a single circuit

  • **kwargs – keyword argument to pass when calling method

Returns:

List of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type:

list[array[float]]

map_wires(wires)

Map the wire labels of wires using this device’s wire map.

Parameters:

wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme

Returns:

wires with new labels

Return type:

Wires

marginal_prob(prob, wires=None)

Return the marginal probability of the computational basis states by summing the probabiliites on the non-specified wires.

If no wires are specified, then all the basis states representable by the device are considered and no marginalization takes place.

Note

If the provided wires are not in the order as they appear on the device, the returned marginal probabilities take this permutation into account.

For example, if the addressable wires on this device are Wires([0, 1, 2]) and this function gets passed wires=[2, 0], then the returned marginal probability vector will take this ‘reversal’ of the two wires into account:

\[\mathbb{P}^{(2, 0)} = \left[ |00\rangle, |10\rangle, |01\rangle, |11\rangle \right]\]
Parameters:
  • prob – The probabilities to return the marginal probabilities for

  • wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal probabilities for. Wires not provided are traced out of the system.

Returns:

array of the resulting marginal probabilities.

Return type:

array[float]

mutual_info(wires0, wires1, log_base)

Returns the mutual information prior to measurement:

\[I(A, B) = S(\rho^A) + S(\rho^B) - S(\rho^{AB})\]

where \(S\) is the von Neumann entropy.

Parameters:
  • wires0 (Wires) – wires of the first subsystem

  • wires1 (Wires) – wires of the second subsystem

  • log_base (float) – base to use in the logarithm

Returns:

the mutual information

Return type:

float

order_wires(subset_wires)

Given some subset of device wires return a Wires object with the same wires; sorted according to the device wire map.

Parameters:

subset_wires (Wires) – The subset of device wires (in any order).

Raises:

ValueError – Could not find some or all subset wires subset_wires in device wires device_wires.

Returns:

a new Wires object containing the re-ordered wires set

Return type:

ordered_wires (Wires)

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

probability(wires=None, shot_range=None, bin_size=None)

Return either the analytic probability or estimated probability of each computational basis state.

Devices that require a finite number of shots always return the estimated probability.

Parameters:

wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal probabilities for. Wires not provided are traced out of the system.

Returns:

list of the probabilities

Return type:

array[float]

process_kwargs(kwargs)

Processing the keyword arguments that were provided upon device initialization.

Parameters:

kwargs (dict) – keyword arguments to be set for the device

qubit_state_vector_check(operation)

Input check for the StatePrepBase operations.

Parameters:

operation (pennylane.Operation) – operation to be checked

Raises:

DeviceError – If the operation is StatePrep

reset()

Reset the Qiskit backend device

run(qcirc)

Run the compiled circuit and query the result.

Parameters:

qcirc (qiskit.QuantumCircuit) – the quantum circuit to be run on the backend

sample(observable, shot_range=None, bin_size=None, counts=False)

Return samples of an observable.

Parameters:
  • observable (Observable) – the observable to sample

  • shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use. If not specified, all samples are used.

  • bin_size (int) – Divides the shot range into bins of size bin_size, and returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.

  • counts (bool) – whether counts (True) or raw samples (False) should be returned

Raises:

EigvalsUndefinedError – if no information is available about the eigenvalues of the observable

Returns:

samples in an array of dimension (shots,) or counts

Return type:

Union[array[float], dict, list[dict]]

sample_basis_states(number_of_states, state_probability)

Sample from the computational basis states based on the state probability.

This is an auxiliary method to the generate_samples method.

Parameters:
  • number_of_states (int) – the number of basis states to sample from

  • state_probability (array[float]) – the computational basis probability vector

Returns:

the sampled basis states

Return type:

array[int]

set_transpile_args(**kwargs)

The transpile argument setter.

Keyword Arguments:

kwargs (dict) – keyword arguments to be set for the Qiskit transpiler. For more details, see the Qiskit transpiler documentation

shadow_expval(obs, circuit)

Compute expectation values using classical shadows in a differentiable manner.

Please refer to shadow_expval() for detailed documentation.

Parameters:
  • obs (ClassicalShadowMP) – The classical shadow expectation value measurement process

  • circuit (QuantumTape) – The quantum tape that is being executed

Returns:

expectation value estimate.

Return type:

float

shot_vec_statistics(circuit: QuantumScript)

Process measurement results from circuit execution using a device with a shot vector and return statistics.

This is an auxiliary method of execute and uses statistics.

When using shot vectors, measurement results for each item of the shot vector are contained in a tuple.

Parameters:

circuit (QuantumTape) – circuit to execute on the device

Raises:

QuantumFunctionError – if the value of return_type is not supported

Returns:

statistics for each shot item from the shot vector

Return type:

tuple

static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)

Convert basis states from base 10 to binary representation.

This is an auxiliary method to the generate_samples method.

Parameters:
  • samples (array[int]) – samples of basis states in base 10 representation

  • num_wires (int) – the number of qubits

  • dtype (type) – Type of the internal integer array to be used. Can be important to specify for large systems for memory allocation purposes.

Returns:

basis states in binary representation

Return type:

array[int]

statistics(circuit: QuantumScript, shot_range=None, bin_size=None)

Process measurement results from circuit execution and return statistics.

This includes returning expectation values, variance, samples, probabilities, states, and density matrices.

Parameters:
  • circuit (QuantumTape) – the quantum tape currently being executed

  • shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use. If not specified, all samples are used.

  • bin_size (int) – Divides the shot range into bins of size bin_size, and returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.

Raises:

QuantumFunctionError – if the value of return_type is not supported

Returns:

the corresponding statistics

Return type:

Union[float, List[float]]

The shot_range and bin_size arguments allow for the statistics to be performed on only a subset of device samples. This finer level of control is accessible from the main UI by instantiating a device with a batch of shots.

For example, consider the following device:

>>> dev = qml.device("my_device", shots=[5, (10, 3), 100])

This device will execute QNodes using 135 shots, however measurement statistics will be course grained across these 135 shots:

  • All measurement statistics will first be computed using the first 5 shots — that is, shots_range=[0, 5], bin_size=5.

  • Next, the tuple (10, 3) indicates 10 shots, repeated 3 times. We will want to use shot_range=[5, 35], performing the expectation value in bins of size 10 (bin_size=10).

  • Finally, we repeat the measurement statistics for the final 100 shots, shot_range=[35, 135], bin_size=100.

supports_observable(observable)
Checks if an observable is supported by this device. Raises a ValueError,

if not a subclass or string of an Observable was passed.

Parameters:

observable (type or str) – observable to be checked

Raises:

ValueError – if observable is not a Observable class or string

Returns:

True iff supplied observable is supported

Return type:

bool

supports_operation(operation)

Checks if an operation is supported by this device.

Parameters:

operation (type or str) – operation to be checked

Raises:

ValueError – if operation is not a Operation class or string

Returns:

True if supplied operation is supported

Return type:

bool

var(observable, shot_range=None, bin_size=None)

Returns the variance of observable on specified wires.

Note: all arguments support _lists_, which indicate a tensor product of observables.

Parameters:
  • observable (str or list[str]) – name of the observable(s)

  • wires (Wires) – wires the observable(s) is to be measured on

  • par (tuple or list[tuple]]) – parameters for the observable(s)

Raises:

NotImplementedError – if the device does not support variance computation

Returns:

variance \(\mathrm{var}(A) = \bra{\psi}A^2\ket{\psi} - \bra{\psi}A\ket{\psi}^2\)

Return type:

float

vn_entropy(wires, log_base)

Returns the Von Neumann entropy prior to measurement.

\[S( \rho ) = -\text{Tr}( \rho \log ( \rho ))\]
Parameters:
  • wires (Wires) – Wires of the considered subsystem.

  • log_base (float) – Base for the logarithm, default is None the natural logarithm is used in this case.

Returns:

returns the Von Neumann entropy

Return type:

float

Contents