LightningQubit

class LightningQubit(wires: ~typing.Union[int, ~typing.List], *, c_dtype: ~typing.Union[~numpy.complex128, ~numpy.complex64] = <class 'numpy.complex128'>, shots: ~typing.Optional[~typing.Union[int, ~typing.List]] = None, batch_obs: bool = False, seed: ~typing.Union[str, int] = 'global', mcmc: bool = False, kernel_name: str = 'Local', num_burnin: int = 100)[source]

Bases: LightningBase

PennyLane Lightning Qubit device.

A device that interfaces with C++ to perform fast linear algebra calculations.

Use of this device requires pre-built binaries or compilation from source. Check out the Lightning-Qubit installation guide for more details.

Parameters
  • wires (int) – the number of wires to initialize the device with

  • c_dtype – Datatypes for statevector representation. Must be one of np.complex64 or np.complex128.

  • shots (int) – How many times the circuit should be evaluated (or sampled) to estimate the expectation values. Defaults to None if not specified. Setting to None results in computing statistics like expectation values and variances analytically.

  • seed (Union[str, None, int, array_like[int], SeedSequence, BitGenerator, Generator]) – A seed-like parameter matching that of seed for numpy.random.default_rng, or a request to seed from numpy’s global random number generator. The default, seed="global" pulls a seed from NumPy’s global generator. seed=None will pull a seed from the OS entropy.

  • mcmc (bool) – Determine whether to use the approximate Markov Chain Monte Carlo sampling method when generating samples.

  • kernel_name (str) – name of transition MCMC kernel. The current version supports two kernels: "Local" and "NonZeroRandom". The local kernel conducts a bit-flip local transition between states. The local kernel generates a random qubit site and then generates a random number to determine the new bit at that qubit site. The "NonZeroRandom" kernel randomly transits between states that have nonzero probability.

  • num_burnin (int) – number of MCMC steps that will be dropped. Increasing this value will result in a closer approximation but increased runtime.

  • batch_obs (bool) – Determine whether we process observables in parallel when computing the jacobian. This value is only relevant when the lightning qubit is built with OpenMP.

c_dtype

State vector complex data type.

capabilities

A DeviceCapabilities object describing the capabilities of the backend device.

config_filepath

A device can use a toml file to specify the capabilities of the backend device.

dtype

State vector complex data type.

name

The name of the device.

shots

Default shots for execution workflows containing this device.

tracker

A Tracker that can store information about device executions, shots, batches, intermediate results, or any additional device dependent information.

wires

The device wires.

c_dtype

State vector complex data type.

capabilities: Optional[DeviceCapabilities] = DeviceCapabilities(operations={'CNOT': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'ControlledPhaseShift': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CRot': OperatorProperties(invertible=True, controllable=False, differentiable=False, conditions=[]), 'CRX': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CRY': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CRZ': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CSWAP': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CY': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'CZ': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'DoubleExcitationMinus': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'DoubleExcitationPlus': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'DoubleExcitation': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'GlobalPhase': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'Hadamard': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'Identity': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'IsingXX': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'IsingXY': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'IsingYY': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'IsingZZ': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'MultiRZ': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'PauliX': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'PauliY': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'PauliZ': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'PhaseShift': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'QubitUnitary': OperatorProperties(invertible=True, controllable=True, differentiable=False, conditions=[]), 'Rot': OperatorProperties(invertible=True, controllable=True, differentiable=False, conditions=[]), 'RX': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'RY': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'RZ': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'SingleExcitationMinus': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'SingleExcitationPlus': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'SingleExcitation': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'S': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'SWAP': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'Toffoli': OperatorProperties(invertible=True, controllable=False, differentiable=True, conditions=[]), 'T': OperatorProperties(invertible=True, controllable=True, differentiable=True, conditions=[]), 'BlockEncode': OperatorProperties(invertible=False, controllable=True, differentiable=False, conditions=[]), 'DiagonalQubitUnitary': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'ECR': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'ISWAP': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'OrbitalRotation': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'PSWAP': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'QubitCarry': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'QubitSum': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'SISWAP': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'SQISW': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'SX': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'MultiControlledX': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[])}, observables={'Identity': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'PauliX': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'PauliY': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'PauliZ': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'Hadamard': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'Hermitian': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'SparseHamiltonian': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'Projector': OperatorProperties(invertible=False, controllable=False, differentiable=False, conditions=[]), 'Sum': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'SProd': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'Prod': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'Exp': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[]), 'LinearCombination': OperatorProperties(invertible=False, controllable=False, differentiable=True, conditions=[])}, measurement_processes={'ExpectationMP': [], 'VarianceMP': [], 'ProbabilityMP': [], 'StateMP': [<ExecutionCondition.ANALYTIC_MODE_ONLY: 'analytic'>], 'SampleMP': [<ExecutionCondition.FINITE_SHOTS_ONLY: 'finiteshots'>], 'CountsMP': [<ExecutionCondition.FINITE_SHOTS_ONLY: 'finiteshots'>]}, qjit_compatible=True, runtime_code_generation=False, dynamic_qubit_management=False, overlapping_observables=True, non_commuting_observables=True, initial_state_prep=True, supported_mcm_methods=['one-shot'])

A DeviceCapabilities object describing the capabilities of the backend device.

config_filepath: Optional[str] = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/xanaduai-pennylane-lightning/envs/latest/lib/python3.10/site-packages/pennylane_lightning/lightning_qubit/lightning_qubit.toml')

A device can use a toml file to specify the capabilities of the backend device. If this is provided, the file will be loaded into a DeviceCapabilities object assigned to the capabilities attribute.

dtype

State vector complex data type.

name

The name of the device.

shots

Default shots for execution workflows containing this device.

Note that the device itself should always pull shots from the provided QuantumTape and its shots, not from this property. This property is used to provide a default at the start of a workflow.

tracker: Tracker = <pennylane.tracker.Tracker object>

A Tracker that can store information about device executions, shots, batches, intermediate results, or any additional device dependent information.

A plugin developer can store information in the tracker by:

# querying if the tracker is active
if self.tracker.active:

    # store any keyword: value pairs of information
    self.tracker.update(executions=1, shots=self._shots, results=results)

    # Calling a user-provided callback function
    self.tracker.record()
wires

The device wires.

Note that wires are optional, and the default value of None means any wires can be used. If a device has wires defined, they will only be used for certain features. This includes:

  • Validation of tapes being executed on the device

  • Defining the wires used when evaluating a state() measurement

compute_derivatives(circuits[, execution_config])

Calculate the jacobian of either a single or a batch of circuits on the device.

compute_jvp(circuits, tangents[, ...])

The jacobian vector product used in forward mode calculation of derivatives.

compute_vjp(circuits, cotangents[, ...])

The vector jacobian product used in reverse-mode differentiation. Lightning[Device] uses the adjoint differentiation method to compute the VJP. :param circuits: the circuit or batch of circuits :type circuits: Union[QuantumTape, Sequence[QuantumTape]] :param cotangents: Gradient-output vector. Must have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers. :type cotangents: Tuple[Number, Tuple[Number]] :param execution_config: a datastructure with all additional information required for execution :type execution_config: ExecutionConfig.

eval_jaxpr(jaxpr, consts, *args)

Execute pennylane variant jaxpr using C++ simulation tools.

execute(circuits[, execution_config])

Execute a circuit or a batch of circuits and turn it into results.

execute_and_compute_derivatives(circuits[, ...])

Compute the results and jacobians of circuits at the same time.

execute_and_compute_jvp(circuits, tangents)

Execute a batch of circuits and compute their jacobian vector products.

execute_and_compute_vjp(circuits, cotangents)

Calculate both the results and the vector jacobian product used in reverse-mode differentiation. :param circuits: the circuit or batch of circuits to be executed :type circuits: Union[QuantumTape, Sequence[QuantumTape]] :param cotangents: Gradient-output vector. Must have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers. :type cotangents: Tuple[Number, Tuple[Number]] :param execution_config: a datastructure with all additional information required for execution :type execution_config: ExecutionConfig.

get_c_interface()

Returns a tuple consisting of the device name, and the location to the shared object with the C/C++ device implementation.

jacobian(circuit, state[, batch_obs, wire_map])

Compute the Jacobian for a single quantum script.

preprocess([execution_config])

This function defines the device transform program to be applied and an updated device configuration.

preprocess_transforms([execution_config])

Returns the transform program to preprocess a circuit for execution.

setup_execution_config([config, circuit])

Sets up an ExecutionConfig that configures the execution behaviour.

simulate(circuit, state[, mcmc, postselect_mode])

Simulate a single quantum script.

simulate_and_jacobian(circuit, state[, ...])

Simulate a single quantum script and compute its Jacobian.

simulate_and_vjp(circuit, cotangents, state)

Simulate a single quantum script and compute its Vector-Jacobian Product (VJP). :param circuit: The single circuit to simulate :type circuit: QuantumTape :param cotangents: Gradient-output vector. Must have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers. :type cotangents: Tuple[Number, Tuple[Number]] :param state: handle to the Lightning state vector :type state: Lightning [Device] StateVector :param batch_obs: Determine whether we process observables in parallel when computing the jacobian. :type batch_obs: bool :param wire_map: a map from wire labels to simulation indices :type wire_map: Optional[dict].

supports_derivatives([execution_config, circuit])

Check whether or not derivatives are available for a given configuration and circuit.

supports_jvp([execution_config, circuit])

Whether or not a given device defines a custom jacobian vector product.

supports_vjp([execution_config, circuit])

Whether or not this device defines a custom vector jacobian product.

vjp(circuit, cotangents, state[, batch_obs, ...])

Compute the Vector-Jacobian Product (VJP) for a single quantum script. :param circuit: The single circuit to simulate :type circuit: QuantumTape :param cotangents: Gradient-output vector. Must have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers. :type cotangents: Tuple[Number, Tuple[Number]] :param state: handle to the Lightning state vector :type state: Lightning [Device] StateVector :param batch_obs: Determine whether we process observables in parallel when computing the VJP. :type batch_obs: bool :param wire_map: a map from wire labels to simulation indices :type wire_map: Optional[dict].

compute_derivatives(circuits: ~typing.Union[~pennylane.tape.tape.QuantumTape, ~typing.Sequence[~pennylane.tape.tape.QuantumTape]], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None)))

Calculate the jacobian of either a single or a batch of circuits on the device.

Parameters
  • circuits (Union[QuantumTape, Sequence[QuantumTape]]) – the circuits to calculate derivatives for

  • execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

The jacobian for each trainable parameter

Return type

Tuple

compute_jvp(circuits: ~typing.Union[~pennylane.tape.qscript.QuantumScript, ~collections.abc.Sequence[~pennylane.tape.qscript.QuantumScript]], tangents: tuple[numbers.Number, ...], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None)))

The jacobian vector product used in forward mode calculation of derivatives.

Parameters
  • circuits (Union[QuantumTape, Sequence[QuantumTape]]) – the circuit or batch of circuits

  • tangents (tensor-like) – Gradient vector for input parameters.

  • execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

A numeric result of computing the jacobian vector product

Return type

Tuple

Definition of jvp:

If we have a function with jacobian:

\[\vec{y} = f(\vec{x}) \qquad J_{i,j} = \frac{\partial y_i}{\partial x_j}\]

The Jacobian vector product is the inner product with the derivatives of \(x\), yielding only the derivatives of the output \(y\):

\[\text{d}y_i = \Sigma_{j} J_{i,j} \text{d}x_j\]

Shape of tangents:

The tangents tuple should be the same length as circuit.get_parameters() and have a single number per parameter. If a number is zero, then the gradient with respect to that parameter does not need to be computed.

compute_vjp(circuits: ~typing.Union[~pennylane.tape.tape.QuantumTape, ~typing.Sequence[~pennylane.tape.tape.QuantumTape]], cotangents: ~typing.Tuple[~numbers.Number], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None))) Tuple

The vector jacobian product used in reverse-mode differentiation. Lightning[Device] uses the adjoint differentiation method to compute the VJP. :param circuits: the circuit or batch of circuits :type circuits: Union[QuantumTape, Sequence[QuantumTape]] :param cotangents: Gradient-output vector. Must have shape matching the output shape of the

corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers.

Parameters

execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

A numeric result of computing the vector jacobian product

Return type

tensor-like

Definition of vjp: If we have a function with jacobian: .. math:

\vec{y} = f(\vec{x}) \qquad J_{i,j} = \frac{\partial y_i}{\partial x_j}

The vector jacobian product is the inner product of the derivatives of the output y with the Jacobian matrix. The derivatives of the output vector are sometimes called the cotangents. .. math:

\text{d}x_i = \Sigma_{i} \text{d}y_i J_{i,j}

Shape of cotangents: The value provided to cotangents should match the output of execute(). For computing the full Jacobian, the cotangents can be batched to vectorize the computation. In this case, the cotangents can have the following shapes. batch_size below refers to the number of entries in the Jacobian: * For a state measurement, the cotangents must have shape (batch_size, 2 ** n_wires) * For n expectation values, the cotangents must have shape (n, batch_size). If n = 1,

then the shape must be (batch_size,).

eval_jaxpr(jaxpr, consts, *args)

Execute pennylane variant jaxpr using C++ simulation tools.

Parameters
  • jaxpr (jax.core.Jaxpr) – jaxpr containing quantum operations

  • consts (list[TensorLike]) – List of constants for the jaxpr closure variables

  • *args (TensorLike) – The arguments to the jaxpr.

Returns

the results of the execution

Return type

list(TensorLike)

import pennylane as qml
import jax
qml.capture.enable()

def f(x):
    @qml.for_loop(3)
    def loop(i, y):
        qml.RX(y, i)
        return y + 0.5
    loop(x)
    return [qml.expval(qml.Z(i)) for i in range(3)]

jaxpr = jax.make_jaxpr(f)(0.5)

dev = qml.device('lightning.qubit', wires=3)
dev.eval_jaxpr(jaxpr.jaxpr, jaxpr.consts, 0.0)
[1.0, 0.8775825618903728, 0.5403023058681395]
execute(circuits: ~typing.Union[~pennylane.tape.tape.QuantumTape, ~typing.Sequence[~pennylane.tape.tape.QuantumTape]], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None))) Union[Result, Sequence[Result]][source]

Execute a circuit or a batch of circuits and turn it into results.

Parameters
  • circuits (Union[QuantumTape, Sequence[QuantumTape]]) – the quantum circuits to be executed

  • execution_config (ExecutionConfig) – a datastructure with additional information required for execution

Returns

A numeric result of the computation.

Return type

TensorLike, tuple[TensorLike], tuple[tuple[TensorLike]]

execute_and_compute_derivatives(circuits: ~typing.Union[~pennylane.tape.tape.QuantumTape, ~typing.Sequence[~pennylane.tape.tape.QuantumTape]], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None))) Tuple

Compute the results and jacobians of circuits at the same time.

Parameters
  • circuits (Union[QuantumTape, Sequence[QuantumTape]]) – the circuits or batch of circuits

  • execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

A numeric result of the computation and the gradient.

Return type

Tuple

execute_and_compute_jvp(circuits: ~typing.Union[~pennylane.tape.qscript.QuantumScript, ~collections.abc.Sequence[~pennylane.tape.qscript.QuantumScript]], tangents: tuple[numbers.Number, ...], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None)))

Execute a batch of circuits and compute their jacobian vector products.

Parameters
  • circuits (Union[QuantumTape, Sequence[QuantumTape]]) – circuit or batch of circuits

  • tangents (tensor-like) – Gradient vector for input parameters.

  • execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

A numeric result of execution and of computing the jacobian vector product

Return type

Tuple, Tuple

See also

execute() and compute_jvp()

execute_and_compute_vjp(circuits: ~typing.Union[~pennylane.tape.tape.QuantumTape, ~typing.Sequence[~pennylane.tape.tape.QuantumTape]], cotangents: ~typing.Tuple[~numbers.Number], execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None))) Tuple

Calculate both the results and the vector jacobian product used in reverse-mode differentiation. :param circuits: the circuit or batch of circuits to be executed :type circuits: Union[QuantumTape, Sequence[QuantumTape]] :param cotangents: Gradient-output vector. Must have shape matching the output shape of the

corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers.

Parameters

execution_config (ExecutionConfig) – a datastructure with all additional information required for execution

Returns

the result of executing the scripts and the numeric result of computing the vector jacobian product

Return type

Tuple, Tuple

static get_c_interface()[source]

Returns a tuple consisting of the device name, and the location to the shared object with the C/C++ device implementation.

jacobian(circuit: QuantumTape, state, batch_obs: bool = False, wire_map: Optional[dict] = None)

Compute the Jacobian for a single quantum script.

Parameters
  • circuit (QuantumTape) – The single circuit to simulate

  • state (Lightning [Device] StateVector) – handle to the Lightning state vector

  • batch_obs (bool) – Determine whether we process observables in parallel when computing the jacobian. Default is False.

  • wire_map (Optional[dict]) – a map from wire labels to simulation indices

Returns

The Jacobian of the quantum script

Return type

TensorLike

preprocess(execution_config: ~pennylane.devices.execution_config.ExecutionConfig = ExecutionConfig(grad_on_execution=None, use_device_gradient=None, use_device_jacobian_product=None, gradient_method=None, gradient_keyword_arguments={}, device_options={}, interface=<Interface.NUMPY: 'numpy'>, derivative_order=1, mcm_config=MCMConfig(mcm_method=None, postselect_mode=None)))[source]

This function defines the device transform program to be applied and an updated device configuration.

Parameters

execution_config (Union[ExecutionConfig, Sequence[ExecutionConfig]]) – A data structure describing the parameters needed to fully describe the execution.

Returns

A transform program that when called returns QuantumTape’s that the device can natively execute as well as a postprocessing function to be called after execution, and a configuration with unset specifications filled in.

Return type

TransformProgram, ExecutionConfig

This device:

  • Supports any qubit operations that provide a matrix

  • Currently does not support finite shots

  • Currently does not intrinsically support parameter broadcasting

preprocess_transforms(execution_config: Optional[ExecutionConfig] = None) TransformProgram

Returns the transform program to preprocess a circuit for execution.

Parameters

execution_config (ExecutionConfig) – The execution configuration object

Returns

A transform program that is called before execution

Return type

TransformProgram

The transform program is composed of a list of individual transforms, which may include:

  • Decomposition of operations and measurements to what is supported by the device.

  • Splitting a circuit with measurements of non-commuting observables or Hamiltonians into multiple executions.

  • Splitting a circuit with batched parameters into multiple executions.

  • Validation of wires, measurements, and observables.

  • Gradient specific preprocessing, such as making sure trainable operators have generators.

Example

All transforms that are part of the preprocessing transform program need to respect the transform contract defined in pennylane.transform().

from pennylane.tape import QuantumScriptBatch
from pennylane.typing import PostprocessingFn

@qml.transform
def my_preprocessing_transform(tape: qml.tape.QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]:
    # e.g. valid the measurements, expand the tape for the hardware execution, ...

    def blank_processing_fn(results):
        return results[0]

    return [tape], processing_fn

A transform program can hold an arbitrary number of individual transforms:

def preprocess(self, config):
    program = TransformProgram()
    program.add_transform(my_preprocessing_transform)
    return program

See also

transform() and TransformProgram

Derivatives and Jacobian products will be bound to the machine learning library before the postprocessing function is called on the results. Therefore, the machine learning library will be responsible for combining and post-processing derivatives returned from the device.

from pennylane.interfaces.jax import execute as jax_boundary

def f(x):
    circuit = qml.tape.QuantumScript([qml.Rot(*x, wires=0)], [qml.expval(qml.Z(0))])
    config = ExecutionConfig(gradient_method="adjoint")
    config = dev.setup_execution_config(config)
    program = dev.preprocess_transforms(config)
    circuit_batch, postprocessing = program((circuit, ))

    def execute_fn(tapes):
        return dev.execute_and_compute_derivatives(tapes, config)

    results = jax_boundary(circuit_batch, dev, execute_fn, None, {})
    return postprocessing(results)

x = jax.numpy.array([1.0, 2.0, 3.0])
jax.grad(f)(x)

In the above code, the quantum derivatives are registered with jax in the jax_boundary function. Only then is the classical postprocessing called on the result object.

setup_execution_config(config: Optional[ExecutionConfig] = None, circuit: Optional[QuantumScript] = None) ExecutionConfig

Sets up an ExecutionConfig that configures the execution behaviour.

The execution config stores information on how the device should perform the execution, as well as how PennyLane should interact with the device. See ExecutionConfig for all available options and what they mean.

An ExecutionConfig is constructed from arguments passed to the QNode, and this method allows the device to update the config object based on device-specific requirements or preferences. See Execution Config for more details.

Parameters
  • config (ExecutionConfig) – The initial ExecutionConfig object that describes the parameters needed to configure the execution behaviour.

  • circuit (QuantumScript) – The quantum circuit to customize the execution config for.

Returns

The updated ExecutionConfig object

Return type

ExecutionConfig

simulate(circuit: QuantumScript, state: LightningStateVector, mcmc: Optional[dict] = None, postselect_mode: Optional[str] = None) Result[source]

Simulate a single quantum script.

Parameters
  • circuit (QuantumTape) – The single circuit to simulate

  • state (LightningStateVector) – handle to Lightning state vector

  • mcmc (dict) – Dictionary containing the Markov Chain Monte Carlo parameters: mcmc, kernel_name, num_burnin. Descriptions of these fields are found in LightningQubit.

  • postselect_mode (str) – Configuration for handling shots with mid-circuit measurement postselection. Use "hw-like" to discard invalid shots and "fill-shots" to keep the same number of shots. Default is None.

Returns

The results of the simulation

Return type

Tuple[TensorLike]

Note that this function can return measurements for non-commuting observables simultaneously.

simulate_and_jacobian(circuit: QuantumTape, state, batch_obs: bool = False, wire_map: Optional[dict] = None) Tuple

Simulate a single quantum script and compute its Jacobian.

Parameters
  • circuit (QuantumTape) – The single circuit to simulate

  • state (Lightning [Device] StateVector) – handle to the Lightning state vector

  • batch_obs (bool) – Determine whether we process observables in parallel when computing the jacobian. Default is False.

  • wire_map (Optional[dict]) – a map from wire labels to simulation indices

Returns

The results of the simulation and the calculated Jacobian

Return type

Tuple[TensorLike]

Note that this function can return measurements for non-commuting observables simultaneously.

simulate_and_vjp(circuit: QuantumTape, cotangents: Tuple[Number], state, batch_obs: bool = False, wire_map: Optional[dict] = None) Tuple

Simulate a single quantum script and compute its Vector-Jacobian Product (VJP). :param circuit: The single circuit to simulate :type circuit: QuantumTape :param cotangents: Gradient-output vector. Must

have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers.

Parameters
  • state (Lightning [Device] StateVector) – handle to the Lightning state vector

  • batch_obs (bool) – Determine whether we process observables in parallel when computing the jacobian.

  • wire_map (Optional[dict]) – a map from wire labels to simulation indices

Returns

The results of the simulation and the calculated VJP

Return type

Tuple[TensorLike]

Note that this function can return measurements for non-commuting observables simultaneously.

supports_derivatives(execution_config: Optional[ExecutionConfig] = None, circuit: Optional[QuantumTape] = None) bool[source]

Check whether or not derivatives are available for a given configuration and circuit.

LightningQubit supports adjoint differentiation with analytic results.

Parameters
  • execution_config (ExecutionConfig) – The configuration of the desired derivative calculation

  • circuit (QuantumTape) – An optional circuit to check derivatives support for.

Returns

Whether or not a derivative can be calculated provided the given information

Return type

Bool

supports_jvp(execution_config: Optional[ExecutionConfig] = None, circuit: Optional[QuantumScript] = None) bool

Whether or not a given device defines a custom jacobian vector product.

Parameters
  • execution_config (ExecutionConfig) – A description of the hyperparameters for the desired computation.

  • circuit (None, QuantumTape) – A specific circuit to check differentation for.

Default behaviour assumes this to be True if compute_jvp() is overridden.

supports_vjp(execution_config: Optional[ExecutionConfig] = None, circuit: Optional[QuantumTape] = None) bool

Whether or not this device defines a custom vector jacobian product. Lightning[Device] will check if supports adjoint differentiation with analytic results. :param execution_config: The configuration of the desired derivative calculation :type execution_config: ExecutionConfig :param circuit: An optional circuit to check derivatives support for. :type circuit: QuantumTape

Returns

Whether or not a derivative can be calculated provided the given information

Return type

Bool

vjp(circuit: QuantumTape, cotangents: Tuple[Number], state, batch_obs: bool = False, wire_map: Optional[dict] = None)

Compute the Vector-Jacobian Product (VJP) for a single quantum script. :param circuit: The single circuit to simulate :type circuit: QuantumTape :param cotangents: Gradient-output vector. Must

have shape matching the output shape of the corresponding circuit. If the circuit has a single output, cotangents may be a single number, not an iterable of numbers.

Parameters
  • state (Lightning [Device] StateVector) – handle to the Lightning state vector

  • batch_obs (bool) – Determine whether we process observables in parallel when computing the VJP.

  • wire_map (Optional[dict]) – a map from wire labels to simulation indices

Returns

The VJP of the quantum script

Return type

TensorLike