Source code for pennylane

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is the top level module from which all basic functions and classes of
PennyLane can be directly imported.
"""
from importlib import reload
import types
import warnings
import pkg_resources


import numpy as _np
from semantic_version import SimpleSpec, Version

from pennylane.boolean_fn import BooleanFn
from pennylane.queuing import QueuingManager, apply

import pennylane.fourier
import pennylane.kernels
import pennylane.math
import pennylane.operation
import pennylane.qnn
import pennylane.templates
import pennylane.pauli
from pennylane.pauli import pauli_decompose
import pennylane.resource
import pennylane.qchem
from pennylane.qchem import taper, symmetry_generators, paulix_ops, taper_operation, import_operator
from pennylane._device import Device, DeviceError
from pennylane._grad import grad, jacobian
from pennylane._qubit_device import QubitDevice
from pennylane._qutrit_device import QutritDevice
from pennylane._version import __version__
from pennylane.about import about
from pennylane.circuit_graph import CircuitGraph
from pennylane.configuration import Configuration
from pennylane.drawer import draw, draw_mpl
from pennylane.tracker import Tracker
from pennylane.io import *
from pennylane.measurements import (
    counts,
    density_matrix,
    measure,
    expval,
    probs,
    sample,
    state,
    var,
    vn_entropy,
    purity,
    mutual_info,
    classical_shadow,
    shadow_expval,
)
from pennylane.ops import *
from pennylane.ops import adjoint, ctrl, exp, sum, pow, prod, s_prod, op_sum
from pennylane.templates import broadcast, layer
from pennylane.templates.embeddings import *
from pennylane.templates.layers import *
from pennylane.templates.tensornetworks import *
from pennylane.templates.swapnetworks import *
from pennylane.templates.state_preparations import *
from pennylane.templates.subroutines import *
from pennylane import qaoa
from pennylane.qnode import QNode, qnode
from pennylane.return_types import enable_return, disable_return, active_return
from pennylane.transforms import (
    adjoint_metric_tensor,
    batch_params,
    batch_input,
    batch_transform,
    batch_partial,
    cut_circuit,
    cut_circuit_mc,
    compile,
    cond,
    defer_measurements,
    metric_tensor,
    specs,
    qfunc_transform,
    op_transform,
    single_tape_transform,
    quantum_monte_carlo,
    apply_controlled_Q,
    commutation_dag,
    pattern_matching,
    pattern_matching_optimization,
)
from pennylane.ops.functions import *
from pennylane.optimize import *
from pennylane.vqe import ExpvalCost
from pennylane.debugging import snapshots
from pennylane.shadows import ClassicalShadow
import pennylane.data
import pennylane.pulse

# collections needs to be imported after all other pennylane imports
from .collections import QNodeCollection, map
import pennylane.gradients  # pylint:disable=wrong-import-order
import pennylane.qinfo  # pylint:disable=wrong-import-order
from pennylane.interfaces import execute  # pylint:disable=wrong-import-order

# Look for an existing configuration file
default_config = Configuration("config.toml")


[docs]class QuantumFunctionError(Exception): """Exception raised when an illegal operation is defined in a quantum function."""
def _get_device_entrypoints(): """Returns a dictionary mapping the device short name to the loadable entrypoint""" return {entry.name: entry for entry in pkg_resources.iter_entry_points("pennylane.plugins")}
[docs]def refresh_devices(): """Scan installed PennyLane plugins to refresh the device list.""" # This function does not return anything; instead, it has a side effect # which is to update the global plugin_devices variable. # We wish to retain the behaviour of a global plugin_devices dictionary, # as re-importing pkg_resources can be a very slow operation on systems # with a large number of installed packages. global plugin_devices # pylint:disable=global-statement reload(pkg_resources) plugin_devices = _get_device_entrypoints()
# get list of installed devices plugin_devices = _get_device_entrypoints()
[docs]def device(name, *args, **kwargs): r"""device(name, wires=1, *args, **kwargs) Load a :class:`~.Device` and return the instance. This function is used to load a particular quantum device, which can then be used to construct QNodes. PennyLane comes with support for the following devices: * :mod:`'default.qubit' <pennylane.devices.default_qubit>`: a simple state simulator of qubit-based quantum circuit architectures. * :mod:`'default.gaussian' <pennylane.devices.default_gaussian>`: a simple simulator of Gaussian states and operations on continuous-variable circuit architectures. * :mod:`'default.qubit.tf' <pennylane.devices.default_qubit_tf>`: a state simulator of qubit-based quantum circuit architectures written in TensorFlow, which allows automatic differentiation through the simulation. * :mod:`'default.qubit.autograd' <pennylane.devices.default_qubit_autograd>`: a state simulator of qubit-based quantum circuit architectures which allows automatic differentiation through the simulation via python's autograd library. Additional devices are supported through plugins — see the `available plugins <https://pennylane.ai/plugins.html>`_ for more details. Args: name (str): the name of the device to load wires (int): the number of wires (subsystems) to initialise the device with Keyword Args: config (pennylane.Configuration): a PennyLane configuration object that contains global and/or device specific configurations. custom_decomps (Dict[Union(str, qml.Operator), Callable]): Custom decompositions to be applied by the device at runtime. decomp_depth (int): For when custom decompositions are specified, the maximum expansion depth used by the expansion function. All devices must be loaded by specifying their **short-name** as listed above, followed by the **wires** (subsystems) you wish to initialize. The *wires* argument can be an integer, in which case the wires of the device are addressed by consecutive integers: .. code-block:: python dev = qml.device('default.qubit', wires=5) def circuit(): qml.Hadamard(wires=1) qml.Hadamard(wires=[0]) qml.CNOT(wires=[3, 4]) ... The *wires* argument can also be a sequence of unique numbers or strings, specifying custom wire labels that the user employs to address the wires: .. code-block:: python dev = qml.device('default.qubit', wires=['ancilla', 'q11', 'q12', -1, 1]) def circuit(): qml.Hadamard(wires='q11') qml.Hadamard(wires=['ancilla']) qml.CNOT(wires=['q12', -1]) ... Most devices accept a ``shots`` argument which specifies how many circuit executions are used to estimate stochastic return values. In particular, ``qml.sample()`` measurements will return as many samples as specified in the shots argument. The shots argument can be changed on a per-call basis using the built-in ``shots`` keyword argument. .. code-block:: python dev = qml.device('default.qubit', wires=1, shots=10) @qml.qnode(dev) def circuit(a): qml.RX(a, wires=0) return qml.sample(qml.PauliZ(wires=0)) >>> circuit(0.8) # 10 samples are returned [ 1 1 1 -1 -1 1 1 1 1 1] >>> circuit(0.8, shots=3) # default is overwritten for this call [1 1 1] >>> circuit(0.8) # back to default of 10 samples [ 1 1 1 -1 -1 1 1 1 1 1] When constructing a device, we may optionally pass a dictionary of custom decompositions to be applied to certain operations upon device execution. This is useful for enabling support of gates on devices where they would normally be unsupported. For example, suppose we are running on an ion trap device which does not natively implement the CNOT gate, but we would still like to write our circuits in terms of CNOTs. On a ion trap device, CNOT can be implemented using the ``IsingXX`` gate. We first define a decomposition function (such functions have the signature ``decomposition(*params, wires)``): .. code-block:: python def ion_trap_cnot(wires): return [ qml.RY(np.pi/2, wires=wires[0]), qml.IsingXX(np.pi/2, wires=wires), qml.RX(-np.pi/2, wires=wires[0]), qml.RY(-np.pi/2, wires=wires[0]), qml.RY(-np.pi/2, wires=wires[1]) ] Next, we create a device, and a QNode for testing. When constructing the QNode, we can set the expansion strategy to ``"device"`` to ensure the decomposition is applied and will be viewable when we draw the circuit. .. code-block:: python # As the CNOT gate normally has no decomposition, we can use default.qubit # here for expository purposes. dev = qml.device( 'default.qubit', wires=2, custom_decomps={"CNOT" : ion_trap_cnot} ) @qml.qnode(dev, expansion_strategy="device") def run_cnot(): qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliX(wires=1)) >>> print(qml.draw(run_cnot)()) 0: ──RY(1.57)─╭IsingXX(1.57)──RX(-1.57)──RY(-1.57)─┤ 1: ───────────╰IsingXX(1.57)──RY(-1.57)────────────┤ <X> Some devices may accept additional arguments. For instance, ``default.gaussian`` accepts the keyword argument ``hbar``, to set the convention used in the commutation relation :math:`[\x,\p]=i\hbar` (by default set to 2). Please refer to the documentation for the individual devices to see any additional arguments that might be required or supported. """ if name not in plugin_devices: # Device does not exist in the loaded device list. # Attempt to refresh the devices, in case the user # installed the plugin during the current Python session. refresh_devices() if name in plugin_devices: options = {} # load global configuration settings if available config = kwargs.get("config", default_config) if config: # combine configuration options with keyword arguments. # Keyword arguments take preference, followed by device options, # followed by plugin options, followed by global options. options.update(config["main"]) options.update(config[name.split(".")[0] + ".global"]) options.update(config[name]) # Pop the custom decomposition keyword argument; we will use it here # only and not pass it to the device. custom_decomps = kwargs.pop("custom_decomps", None) decomp_depth = kwargs.pop("decomp_depth", 10) kwargs.pop("config", None) options.update(kwargs) # loads the device class plugin_device_class = plugin_devices[name].load() if Version(version()) not in SimpleSpec(plugin_device_class.pennylane_requires): raise DeviceError( f"The {name} plugin requires PennyLane versions {plugin_device_class.pennylane_requires}, " f"however PennyLane version {__version__} is installed." ) # Construct the device dev = plugin_device_class(*args, **options) # Once the device is constructed, we set its custom expansion function if # any custom decompositions were specified. if custom_decomps is not None: custom_decomp_expand_fn = pennylane.transforms.create_decomp_expand_fn( custom_decomps, dev, decomp_depth=decomp_depth ) dev.custom_expand(custom_decomp_expand_fn) return dev raise DeviceError("Device does not exist. Make sure the required plugin is installed.")
[docs]def version(): """Returns the PennyLane version number.""" return __version__
# pragma: no cover def __getattr__(name): """Raise a deprecation warning and still allow `qml.grouping.func_name` syntax for one release.""" if name == "grouping": warnings.warn( "The qml.grouping module is deprecated, please use qml.pauli instead.", UserWarning, ) import pennylane.grouping as grouping # pylint:disable=import-outside-toplevel,consider-using-from-import return grouping raise AttributeError(f"Module {__name__} has no attribute {name}")