qml.batch_partial¶
-
batch_partial
(qnode, all_operations=False, preprocess=None, **partial_kwargs)[source]¶ Create a batched partial callable object from the QNode specified.
This transform provides functionality akin to
functools.partial
and allows batching the arguments used for calling the batched partial object.- Parameters
qnode (pennylane.QNode) – QNode to pre-supply arguments to
all_operations (bool) – If
True
, a batch dimension will be added to all operations in the QNode, rather than just trainable QNode parameters.preprocess (dict) – If provided, maps every QNode argument name to a preprocessing function. When the returned partial function is called, the arguments are first passed to the preprocessing functions, and the return values are passed to the QNode.
partial_kwargs (dict) – pre-supplied arguments to pass to the QNode.
- Returns
Function which wraps the QNode and accepts the same arguments minus the pre-supplied arguments provided. The first dimension of each argument of the wrapper function will be treated as a batch dimension.
- Return type
function
Example
Consider the following circuit:
dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def circuit(x, y): qml.RX(x, wires=0) qml.RY(y, wires=1) return qml.expval(qml.Z(0) @ qml.Z(1))
The
qml.batch_partial
decorator allows us to create a partial callable object that wraps the QNode. For example,>>> y = np.array(0.2) >>> batched_partial_circuit = qml.batch_partial(circuit, y=y)
The unevaluated arguments of the resulting function must now have a batch dimension, and the output of the function also has a batch dimension:
>>> batch_size = 4 >>> x = np.linspace(0.1, 0.5, batch_size) >>> batched_partial_circuit(x) tensor([0.97517033, 0.95350781, 0.91491915, 0.86008934], requires_grad=True)
Jacobians can be computed for the arguments of the wrapper function, but not for any pre-supplied argument passed to
qml.batch_partial
:>>> qml.jacobian(batched_partial_circuit)(x) array([[-0.0978434 , 0. , 0. , 0. ], [ 0. , -0.22661276, 0. , 0. ], [ 0. , 0. , -0.35135943, 0. ], [ 0. , 0. , 0. , -0.46986895]])
The same
qml.batch_partial
function can also be used to replace arguments of a QNode with functions, and calling the wrapper would evaluate those functions and pass the results into the QNode. For example,>>> x = np.array(0.1) >>> y_fn = lambda y0: y0 * 0.2 + 0.3 >>> batched_lambda_circuit = qml.batch_partial(circuit, x=x, preprocess={"y": y_fn})
The wrapped function
batched_lambda_circuit
also expects arguments to have an initial batch dimension:>>> batch_size = 4 >>> y0 = np.linspace(0.5, 2, batch_size) >>> batched_lambda_circuit(y0) tensor([0.91645953, 0.8731983 , 0.82121237, 0.76102116], requires_grad=True)
Jacobians can be computed in this scenario as well:
>>> qml.jacobian(batched_lambda_circuit)(y0) array([[-0.07749457, 0. , 0. , 0. ], [ 0. , -0.09540608, 0. , 0. ], [ 0. , 0. , -0.11236432, 0. ], [ 0. , 0. , 0. , -0.12819986]])