qml.ctrl¶
- ctrl(op, control, control_values=None, work_wires=None)[source]¶
Create a method that applies a controlled version of the provided op.
qjit()
compatible.Note
When used with
qjit()
, this function only supports the Catalyst compiler. Seecatalyst.ctrl()
for more details.Please see the Catalyst quickstart guide, as well as the sharp bits and debugging tips page for an overview of the differences between Catalyst and PennyLane.
- Parameters
op (function or
Operator
) – A single operator or a function that applies pennylane operators.control (Wires) – The control wire(s).
control_values (bool or list[bool]) – The value(s) the control wire(s) should take. Integers other than 0 or 1 will be treated as
int(bool(x))
.work_wires (Any) – Any auxiliary wires that can be used in the decomposition
- Returns
If an Operator is provided, returns a Controlled version of the Operator. If a function is provided, returns a function with the same call signature that creates a controlled version of the provided function.
- Return type
function or
Operator
See also
Example
@qml.qnode(qml.device('default.qubit', wires=range(4))) def circuit(x): qml.X(2) qml.ctrl(qml.RX, (1,2,3), control_values=(0,1,0))(x, wires=0) return qml.expval(qml.Z(0))
>>> print(qml.draw(circuit)("x")) 0: ────╭RX(x)─┤ <Z> 1: ────├○─────┤ 2: ──X─├●─────┤ 3: ────╰○─────┤ >>> x = np.array(1.2) >>> circuit(x) tensor(0.36235775, requires_grad=True) >>> qml.grad(circuit)(x) tensor(-0.93203909, requires_grad=True)
ctrl()
works on both callables likeqml.RX
or a quantum function and individualOperator
’s.>>> qml.ctrl(qml.Hadamard(0), (1,2)) Controlled(H(0), control_wires=[1, 2])
Controlled operations work with all other forms of operator math and simplification:
>>> op = qml.ctrl(qml.RX(1.2, wires=0) ** 2 @ qml.RY(0.1, wires=0), control=1) >>> qml.simplify(qml.adjoint(op)) Controlled(RY(12.466370614359173, wires=[0]) @ RX(10.166370614359172, wires=[0]), control_wires=[1])
Example with compiler
dev = qml.device("lightning.qubit", wires=2) @qml.qjit @qml.qnode(dev) def workflow(theta, w, cw): qml.Hadamard(wires=[0]) qml.Hadamard(wires=[1]) def func(arg): qml.RX(theta, wires=arg) def cond_fn(): qml.RY(theta, wires=w) qml.ctrl(func, control=[cw])(w) qml.ctrl(qml.cond(theta > 0.0, cond_fn), control=[cw])() qml.ctrl(qml.RZ, control=[cw])(theta, wires=w) qml.ctrl(qml.RY(theta, wires=w), control=[cw]) return qml.probs()
>>> workflow(jnp.pi/4, 1, 0) array([0.25, 0.25, 0.03661165, 0.46338835])