qml.gradients.compute_jvp_multi¶
- compute_jvp_multi(tangent, jac)[source]¶
Convenience function to compute the Jacobian-vector product for a given vector of gradient outputs and a Jacobian for a tape with multiple measurements.
- Parameters
tangent (tensor_like, list) – tangent vector
jac (tensor_like, tuple) – Jacobian matrix
- Returns
the Jacobian-vector product
- Return type
tensor_like
Examples
For a single parameter and multiple measurements (one without shape and one with shape, e.g. expval and probs):
>>> tangent = np.array([2.0]) >>> jac = tuple([np.array([0.3]), np.array([0.2, 0.5])]) >>> qml.gradients.compute_jvp_multi(tangent, jac) (array([0.6]), array([0.4, 1. ]))
2. For multiple parameters (in this case 2 parameters) and multiple measurements (one without shape and one with shape, e.g. expval and probs):
>>> tangent = np.array([1.0, 2.0]) >>> jac = tuple([tuple([np.array([0.3]), np.array([0.4])]), tuple([np.array([0.2, 0.5]), np.array([0.3, 0.8])]),]) >>> qml.gradients.compute_jvp_multi(tangent, jac) (array([1.1]), array([0.8, 2.1]))
code/api/pennylane.gradients.compute_jvp_multi
Download Python script
Download Notebook
View on GitHub