qml.qchem.contracted_norm¶
- contracted_norm(l, alpha, a)[source]¶
Compute the normalization constant for a contracted Gaussian function.
A contracted Gaussian function is defined as
\[\psi = a_1 G_1 + a_2 G_2 + a_3 G_3,\]where \(a\) denotes the contraction coefficients and \(G\) is a primitive Gaussian function. The normalization constant for this function is computed as
\[N(l, \alpha, a) = [\frac{\pi^{3/2}(2l_x-1)!! (2l_y-1)!! (2l_z-1)!!}{2^{l_x + l_y + l_z}} \sum_{i,j} \frac{a_i a_j}{(\alpha_i + \alpha_j)^{{l_x + l_y + l_z+3/2}}}]^{-1/2}\]where \(l\) and \(\alpha\) denote the angular momentum quantum number and the exponent of the Gaussian function, respectively.
- Parameters
l (tuple[int]) – angular momentum quantum number of the primitive Gaussian functions
alpha (array[float]) – exponents of the primitive Gaussian functions
a (array[float]) – coefficients of the contracted Gaussian functions
- Returns
normalization coefficient
- Return type
array[float]
Example
>>> l = (0, 0, 0) >>> alpha = np.array([3.425250914, 0.6239137298, 0.168855404]) >>> a = np.array([1.79444183, 0.50032649, 0.18773546]) >>> n = contracted_norm(l, alpha, a) >>> print(n) 0.39969026908800853
code/api/pennylane.qchem.contracted_norm
Download Python script
Download Notebook
View on GitHub