qml.qchem.primitive_norm¶
- primitive_norm(l, alpha)[source]¶
Compute the normalization constant for a primitive Gaussian function.
A Gaussian function centred at the position \(r = (x, y, z)\) is defined as
\[G = x^{l_x} y^{l_y} z^{l_z} e^{-\alpha r^2},\]where \(l = (l_x, l_y, l_z)\) defines the angular momentum quantum number and \(\alpha\) is the Gaussian function exponent. The normalization constant for this function is computed as
\[N(l, \alpha) = (\frac{2\alpha}{\pi})^{3/4} \frac{(4 \alpha)^{(l_x + l_y + l_z)/2}} {(2l_x-1)!! (2l_y-1)!! (2l_z-1)!!)^{1/2}}.\]- Parameters
l (tuple[int]) – angular momentum quantum number of the basis function
alpha (array[float]) – exponent of the primitive Gaussian function
- Returns
normalization coefficient
- Return type
array[float]
Example
>>> l = (0, 0, 0) >>> alpha = np.array([3.425250914]) >>> n = primitive_norm(l, alpha) >>> print(n) array([1.79444183])
code/api/pennylane.qchem.primitive_norm
Download Python script
Download Notebook
View on GitHub