qml.qnn.TorchLayer¶
- class TorchLayer(qnode, weight_shapes, init_method=None)[source]¶
Bases:
torch.nn.modules.module.Module
Converts a
QNode
to a Torch layer.The result can be used within the
torch.nn
Sequential or Module classes for creating quantum and hybrid models.- Parameters
qnode (qml.QNode) – the PennyLane QNode to be converted into a Torch layer
weight_shapes (dict[str, tuple]) – a dictionary mapping from all weights used in the QNode to their corresponding shapes
init_method (Union[Callable, Dict[str, Union[Callable, torch.Tensor]], None]) – Either a torch.nn.init function for initializing all QNode weights or a dictionary specifying the callable/value used for each weight. If not specified, weights are randomly initialized using the uniform distribution over \([0, 2 \pi]\).
Example
First let’s define the QNode that we want to convert into a Torch layer:
n_qubits = 2 dev = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev) def qnode(inputs, weights_0, weight_1): qml.RX(inputs[0], wires=0) qml.RX(inputs[1], wires=1) qml.Rot(*weights_0, wires=0) qml.RY(weight_1, wires=1) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Z(0)), qml.expval(qml.Z(1))
The signature of the QNode must contain an
inputs
named argument for input data, with all other arguments to be treated as internal weights. We can then convert to a Torch layer with:>>> weight_shapes = {"weights_0": 3, "weight_1": 1} >>> qlayer = qml.qnn.TorchLayer(qnode, weight_shapes)
The internal weights of the QNode are automatically initialized within the
TorchLayer
and must have their shapes specified in aweight_shapes
dictionary. It is then easy to combine with other neural network layers from the torch.nn module and create a hybrid:>>> clayer = torch.nn.Linear(2, 2) >>> model = torch.nn.Sequential(qlayer, clayer)
Usage Details
QNode signature
The QNode must have a signature that satisfies the following conditions:
Contain an
inputs
named argument for input data.All other arguments must accept an array or tensor and are treated as internal weights of the QNode.
All other arguments must have no default value.
The
inputs
argument is permitted to have a default value provided the gradient with respect toinputs
is not required.There cannot be a variable number of positional or keyword arguments, e.g., no
*args
or**kwargs
present in the signature.
Output shape
If the QNode returns a single measurement, then the output of the
TorchLayer
will have shape(batch_dim, *measurement_shape)
, wheremeasurement_shape
is the output shape of the measurement:def print_output_shape(measurements): n_qubits = 2 dev = qml.device("default.qubit", wires=n_qubits, shots=100) @qml.qnode(dev) def qnode(inputs, weights): qml.templates.AngleEmbedding(inputs, wires=range(n_qubits)) qml.templates.StronglyEntanglingLayers(weights, wires=range(n_qubits)) if len(measurements) == 1: return qml.apply(measurements[0]) return [qml.apply(m) for m in measurements] weight_shapes = {"weights": (3, n_qubits, 3)} qlayer = qml.qnn.TorchLayer(qnode, weight_shapes) batch_dim = 5 x = torch.zeros((batch_dim, n_qubits)) return qlayer(x).shape
>>> print_output_shape([qml.expval(qml.Z(0))]) torch.Size([5]) >>> print_output_shape([qml.probs(wires=[0, 1])]) torch.Size([5, 4]) >>> print_output_shape([qml.sample(wires=[0, 1])]) torch.Size([5, 100, 2])
If the QNode returns multiple measurements, then the measurement results will be flattened and concatenated, resulting in an output of shape
(batch_dim, total_flattened_dim)
:>>> print_output_shape([qml.expval(qml.Z(0)), qml.probs(wires=[0, 1])]) torch.Size([5, 5]) >>> print_output_shape([qml.probs([0, 1]), qml.sample(wires=[0, 1])]) torch.Size([5, 204])
Initializing weights
If
init_method
is not specified, weights are randomly initialized from the uniform distribution on the interval \([0, 2 \pi]\).Alternative a): The optional
init_method
argument ofTorchLayer
allows for the initialization method of the QNode weights to be specified. The function passed to the argument must be from the torch.nn.init module. For example, weights can be randomly initialized from the normal distribution by passing:init_method = torch.nn.init.normal_
Alternative b): Two dictionaries
weight_shapes
andinit_method
are passed, whosekeys
match theargs
of the qnode.@qml.qnode(dev) def qnode(inputs, weights_0, weights_1, weights_2, weight_3, weight_4): qml.templates.AngleEmbedding(inputs, wires=range(n_qubits)) qml.templates.StronglyEntanglingLayers(weights_0, wires=range(n_qubits)) qml.templates.BasicEntanglerLayers(weights_1, wires=range(n_qubits)) qml.Rot(*weights_2, wires=0) qml.RY(weight_3, wires=1) qml.RZ(weight_4, wires=1) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Z(0)), qml.expval(qml.Z(1)) weight_shapes = { "weights_0": (3, n_qubits, 3), "weights_1": (3, n_qubits), "weights_2": 3, "weight_3": 1, "weight_4": (1,), } init_method = { "weights_0": torch.nn.init.normal_, "weights_1": torch.nn.init.uniform_, "weights_2": torch.tensor([1., 2., 3.]), "weight_3": torch.tensor(1.), # scalar when shape is not an iterable and is <= 1 "weight_4": torch.tensor([1.]), } qlayer = qml.qnn.TorchLayer(qnode, weight_shapes=weight_shapes, init_method=init_method)
Model saving
Instances of
TorchLayer
can be saved using the usualtorch.save()
utility:qlayer = qml.qnn.TorchLayer(qnode, weight_shapes=weight_shapes) torch.save(qlayer.state_dict(), SAVE_PATH)
To load the layer again, an instance of the class must be created first before calling
torch.load()
, as required by PyTorch:qlayer = qml.qnn.TorchLayer(qnode, weight_shapes=weight_shapes) qlayer.load_state_dict(torch.load(SAVE_PATH)) qlayer.eval()
Note
Currently
TorchLayer
objects cannot be saved using thetorch.save(qlayer, SAVE_PATH)
syntax. In order to save aTorchLayer
object, the object’sstate_dict
should be saved instead.PyTorch modules that contain
TorchLayer
objects can also be saved and loaded.Saving:
qlayer = qml.qnn.TorchLayer(qnode, weight_shapes=weight_shapes) clayer = torch.nn.Linear(2, 2) model = torch.nn.Sequential(qlayer, clayer) torch.save(model.state_dict(), SAVE_PATH)
Loading:
qlayer = qml.qnn.TorchLayer(qnode, weight_shapes=weight_shapes) clayer = torch.nn.Linear(2, 2) model = torch.nn.Sequential(qlayer, clayer) model.load_state_dict(torch.load(SAVE_PATH)) model.eval()
Full code example
The code block below shows how a circuit composed of templates from the Templates module can be combined with classical Linear layers to learn the two-dimensional moons dataset.
import numpy as np import pennylane as qml import torch import sklearn.datasets n_qubits = 2 dev = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev) def qnode(inputs, weights): qml.templates.AngleEmbedding(inputs, wires=range(n_qubits)) qml.templates.StronglyEntanglingLayers(weights, wires=range(n_qubits)) return [qml.expval(qml.Z(0)), qml.expval(qml.Z(1))] weight_shapes = {"weights": (3, n_qubits, 3)} qlayer = qml.qnn.TorchLayer(qnode, weight_shapes) clayer1 = torch.nn.Linear(2, 2) clayer2 = torch.nn.Linear(2, 2) softmax = torch.nn.Softmax(dim=1) model = torch.nn.Sequential(clayer1, qlayer, clayer2, softmax) samples = 100 x, y = sklearn.datasets.make_moons(samples) y_hot = np.zeros((samples, 2)) y_hot[np.arange(samples), y] = 1 X = torch.tensor(x).float() Y = torch.tensor(y_hot).float() opt = torch.optim.SGD(model.parameters(), lr=0.5) loss = torch.nn.L1Loss()
The model can be trained using:
epochs = 8 batch_size = 5 batches = samples // batch_size data_loader = torch.utils.data.DataLoader(list(zip(X, Y)), batch_size=batch_size, shuffle=True, drop_last=True) for epoch in range(epochs): running_loss = 0 for x, y in data_loader: opt.zero_grad() loss_evaluated = loss(model(x), y) loss_evaluated.backward() opt.step() running_loss += loss_evaluated avg_loss = running_loss / batches print("Average loss over epoch {}: {:.4f}".format(epoch + 1, avg_loss))
An example output is shown below:
Average loss over epoch 1: 0.5089 Average loss over epoch 2: 0.4765 Average loss over epoch 3: 0.2710 Average loss over epoch 4: 0.1865 Average loss over epoch 5: 0.1670 Average loss over epoch 6: 0.1635 Average loss over epoch 7: 0.1528 Average loss over epoch 8: 0.1528
Attributes
T_destination
alias of TypeVar('T_destination', bound=
Dict
[str
,Any
])call_super_init
dump_patches
Name of the argument to be used as the input to the Torch layer.
- input_arg¶
Name of the argument to be used as the input to the Torch layer. Set to
"inputs"
.
- training¶
Methods
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.construct
(args, kwargs)Constructs the wrapped QNode on input data using the initialized weights.
cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(inputs)Evaluates a forward pass through the QNode based upon input data and the initialized weights.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_input_argument
([input_name])Set the name of the input argument.
share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
- construct(args, kwargs)[source]¶
Constructs the wrapped QNode on input data using the initialized weights.
This method was added to match the QNode interface. The provided args must contain a single item, which is the input to the layer. The provided kwargs is unused.
- Parameters
args (tuple) – A tuple containing one entry that is the input to this layer
kwargs (dict) – Unused