Source code for pennylane.circuit_graph

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the CircuitGraph class which is used to generate a DAG (directed acyclic graph)
representation of a quantum circuit from an Operator queue.
"""
from collections import defaultdict, namedtuple
from functools import cached_property
from typing import List, Optional, Union

import numpy as np
import rustworkx as rx

from pennylane.measurements import MeasurementProcess
from pennylane.operation import Observable, Operator
from pennylane.ops.identity import I
from pennylane.queuing import QueuingManager, WrappedObj
from pennylane.resource import ResourcesOperation
from pennylane.wires import Wires


def _get_wires(obj, all_wires):
    return all_wires if len(obj.wires) == 0 else obj.wires


Layer = namedtuple("Layer", ["ops", "param_inds"])
"""Parametrized layer of the circuit.

Args:

    ops (list[Operator]): parametrized operators in the layer
    param_inds (list[int]): corresponding free parameter indices
"""
# TODO define what a layer is

LayerData = namedtuple("LayerData", ["pre_ops", "ops", "param_inds", "post_ops"])
"""Parametrized layer of the circuit.

Args:
    pre_ops (list[Operator]): operators that precede the layer
    ops (list[Operator]): parametrized operators in the layer
    param_inds (tuple[int]): corresponding free parameter indices
    post_ops (list[Operator]): operators that succeed the layer
"""


def _construct_graph_from_queue(queue, all_wires):
    inds_for_objs = defaultdict(list)  # dict from wrappedobjs to all indices for the objs
    nodes_on_wires = defaultdict(list)  # wire to list of nodes

    graph = rx.PyDiGraph(multigraph=False)

    for i, obj in enumerate(queue):
        inds_for_objs[WrappedObj(obj)].append(i)

        obj_node = graph.add_node(i)
        for w in _get_wires(obj, all_wires):
            if w in nodes_on_wires:
                graph.add_edge(nodes_on_wires[w][-1], obj_node, "")
            nodes_on_wires[w].append(obj_node)

    return graph, inds_for_objs, nodes_on_wires


# pylint: disable=too-many-instance-attributes, too-many-public-methods
[docs]class CircuitGraph: """Represents a quantum circuit as a directed acyclic graph. In this representation the :class:`~.Operator` instances are the nodes of the graph, and each directed edge represent a subsystem (or a group of subsystems) on which the two Operators act subsequently. This representation can describe the causal relationships between arbitrary quantum channels and measurements, not just unitary gates. Args: ops (Iterable[.Operator]): quantum operators constituting the circuit, in temporal order obs (List[Union[MeasurementProcess, Observable]]): terminal measurements, in temporal order wires (.Wires): The addressable wire registers of the device that will be executing this graph par_info (Optional[list[dict]]): Parameter information. For each index, the entry is a dictionary containing an operation and an index into that operation's parameters. trainable_params (Optional[set[int]]): A set containing the indices of parameters that support differentiability. The indices provided match the order of appearance in the quantum circuit. """ # pylint: disable=too-many-arguments def __init__( self, ops: list[Union[Operator, MeasurementProcess]], obs: List[Union[MeasurementProcess, Observable]], wires: Wires, par_info: Optional[list[dict]] = None, trainable_params: Optional[set[int]] = None, ): self._operations = ops self._observables = obs self.par_info = par_info self.trainable_params = trainable_params self._queue = ops + obs self.wires = Wires(wires) """Wires: wires that are addressed in the operations. Required to translate between wires and indices of the wires on the device.""" self.num_wires = len(wires) """int: number of wires the circuit contains""" self._graph, self._inds_for_objs, self._nodes_on_wires = _construct_graph_from_queue( self._queue, wires ) # Required to keep track if we need to handle multiple returned # observables per wire self._max_simultaneous_measurements = None
[docs] def print_contents(self): """Prints the contents of the quantum circuit.""" print("Operations") print("==========") for op in self.operations: print(repr(op)) print("\nObservables") print("===========") for op in self.observables: print(repr(op))
[docs] def serialize(self) -> str: """Serialize the quantum circuit graph based on the operations and observables in the circuit graph and the index of the variables used by them. The string that is produced can be later hashed to assign a unique value to the circuit graph. Returns: string: serialized quantum circuit graph """ serialization_string = "" delimiter = "!" for op in self.operations_in_order: serialization_string += op.name for param in op.data: serialization_string += delimiter serialization_string += str(param) serialization_string += delimiter serialization_string += str(op.wires.tolist()) # Adding a distinct separating string that could not occur by any combination of the # name of the operation and wires serialization_string += "|||" for mp in self.observables_in_order: obs = mp.obs or mp data, name = ([], "Identity") if obs is mp else (obs.data, str(obs.name)) serialization_string += str(mp.return_type) serialization_string += delimiter serialization_string += name for param in data: serialization_string += delimiter serialization_string += str(param) serialization_string += delimiter serialization_string += str(obs.wires.tolist()) return serialization_string
@property def hash(self) -> int: """Creating a hash for the circuit graph based on the string generated by serialize. Returns: int: the hash of the serialized quantum circuit graph """ return hash(self.serialize()) @property def observables_in_order(self): """Observables in the circuit, in a fixed topological order. The topological order used by this method is guaranteed to be the same as the order in which the measured observables are returned by the quantum function. Currently the topological order is determined by the queue index. Returns: List[Union[MeasurementProcess, Observable]]: observables """ return self._observables @property def observables(self): """Observables in the circuit.""" return self._observables @property def operations_in_order(self): """Operations in the circuit, in a fixed topological order. Currently the topological order is determined by the queue index. The complement of :meth:`QNode.observables`. Together they return every :class:`Operator` instance in the circuit. Returns: list[Operation]: operations """ return self._operations @property def operations(self): """Operations in the circuit.""" return self._operations @property def graph(self): """The graph representation of the quantum circuit. The graph has nodes representing indices into the queue, and directed edges pointing from nodes to their immediate dependents/successors. Returns: rustworkx.PyDiGraph: the directed acyclic graph representing the quantum circuit """ return self._graph
[docs] def wire_indices(self, wire): """Operator indices on the given wire. Args: wire (int): wire to examine Returns: list[int]: indices of operators on the wire, in temporal order """ return self._nodes_on_wires[wire]
[docs] def ancestors(self, ops, sort=False): """Ancestors of a given set of operators. Args: ops (Iterable[Operator]): set of operators in the circuit Returns: list[Operator]: ancestors of the given operators """ if isinstance(ops, (Operator, MeasurementProcess)): raise ValueError( "CircuitGraph.ancestors accepts an iterable of" " operators and measurements, not operators and measurements themselves." ) if any(len(self._inds_for_objs[WrappedObj(op)]) > 1 for op in ops): raise ValueError( "Cannot calculate ancestors for an operator that occurs multiple times." ) ancestors = set() for op in ops: ind = self._inds_for_objs[WrappedObj(op)][0] op_ancestors = rx.ancestors(self._graph, ind) ancestors.update(set(op_ancestors)) if sort: ancestors = sorted(ancestors) return [self._queue[ind] for ind in ancestors]
[docs] def descendants(self, ops, sort=False): """Descendants of a given set of operators. Args: ops (Iterable[Operator]): set of operators in the circuit Returns: list[Operator]: descendants of the given operators """ if isinstance(ops, (Operator, MeasurementProcess)): raise ValueError( "CircuitGraph.descendants accepts an iterable of" " operators and measurements, not operators and measurements themselves." ) if any(len(self._inds_for_objs[WrappedObj(op)]) > 1 for op in ops): raise ValueError( "cannot calculate decendents for an operator that occurs multiple times." ) descendants = set() for op in ops: ind = self._inds_for_objs[WrappedObj(op)][0] op_descendants = rx.descendants(self._graph, ind) descendants.update(set(op_descendants)) if sort: descendants = sorted(descendants) return [self._queue[ind] for ind in descendants]
[docs] def ancestors_in_order(self, ops): """Operator ancestors in a topological order. Currently the topological order is determined by the queue index. Args: ops (Iterable[Operator]): set of operators in the circuit Returns: list[Operator]: ancestors of the given operators, topologically ordered """ return self.ancestors(ops, sort=True)
[docs] def descendants_in_order(self, ops): """Operator descendants in a topological order. Currently the topological order is determined by the queue index. Args: ops (Iterable[Operator]): set of operators in the circuit Returns: list[Operator]: descendants of the given operators, topologically ordered """ return self.descendants(ops, sort=True)
[docs] def nodes_between(self, a, b): r"""Nodes on all the directed paths between the two given nodes. Returns the set of all nodes ``s`` that fulfill :math:`a \le s \le b`. There is a directed path from ``a`` via ``s`` to ``b`` iff the set is nonempty. The endpoints belong to the path. Args: a (Operator): initial node b (Operator): final node Returns: list[Operator]: nodes on all the directed paths between a and b """ A = self.descendants([a]) A.append(a) B = self.ancestors([b]) B.append(b) return [B.pop(i) for op1 in A for i, op2 in enumerate(B) if op1 is op2]
@property def parametrized_layers(self): """Identify the parametrized layer structure of the circuit. Returns: list[Layer]: layers of the circuit """ # FIXME maybe layering should be greedier, for example [a0 b0 c1 d1] should layer as [a0 # c1], [b0, d1] and not [a0], [b0 c1], [d1] keep track of the current layer current = Layer([], []) layers = [current] for idx, info in enumerate(self.par_info): if idx in self.trainable_params: op = info["op"] # get all predecessor ops of the op sub = self.ancestors((op,)) # check if any of the dependents are in the # currently assembled layer if any(o1 is o2 for o1 in current.ops for o2 in sub): # operator depends on current layer, start a new layer current = Layer([], []) layers.append(current) # store the parameters and ops indices for the layer current.ops.append(op) current.param_inds.append(idx) return layers
[docs] def iterate_parametrized_layers(self): """Parametrized layers of the circuit. Returns: Iterable[LayerData]: layers with extra metadata """ # iterate through each layer for ops, param_inds in self.parametrized_layers: pre_queue = self.ancestors_in_order(ops) post_queue = self.descendants_in_order(ops) yield LayerData(pre_queue, ops, tuple(param_inds), post_queue)
[docs] def update_node(self, old, new): """Replaces the given circuit graph node with a new one. Args: old (Operator): node to replace new (Operator): replacement Raises: ValueError: if the new :class:`~.Operator` does not act on the same wires as the old one """ # NOTE Does not alter the graph edges in any way. variable_deps is not changed, Dangerous! if new.wires != old.wires: raise ValueError("The new Operator must act on the same wires as the old one.") self._inds_for_objs[WrappedObj(new)] = self._inds_for_objs.pop(WrappedObj(old)) for i, op in enumerate(self._operations): if op is old: self._operations[i] = new for i, mp in enumerate(self._observables): if mp is old: self._observables[i] = new for i, obj in enumerate(self._queue): if obj is old: self._queue[i] = new
[docs] def get_depth(self): """Depth of the quantum circuit (longest path in the DAG).""" return self._depth
@cached_property def _depth(self): # If there are no operations in the circuit, the depth is 0 if not self.operations: return 0 with QueuingManager.stop_recording(): ops_with_initial_I = [ I(self.wires) ] + self.operations # add identity wire to end the graph operation_graph, _, _ = _construct_graph_from_queue(ops_with_initial_I, self.wires) # pylint: disable=unused-argument def weight_fn(in_idx, out_idx, w): out_op = ops_with_initial_I[out_idx] if isinstance(out_op, ResourcesOperation): return out_op.resources().depth return 1 return rx.dag_longest_path_length(operation_graph, weight_fn=weight_fn)
[docs] def has_path_idx(self, a_idx: int, b_idx: int) -> bool: """Checks if a path exists between the two given nodes. Args: a_idx (int): initial node index b_idx (int): final node index Returns: bool: returns ``True`` if a path exists """ if a_idx == b_idx: return True return ( len( rx.digraph_dijkstra_shortest_paths( self._graph, a_idx, b_idx, weight_fn=None, default_weight=1.0, as_undirected=False, ) ) != 0 )
[docs] def has_path(self, a, b) -> bool: """Checks if a path exists between the two given nodes. Args: a (Operator): initial node b (Operator): final node Returns: bool: returns ``True`` if a path exists """ if a is b: return True if any(len(self._inds_for_objs[WrappedObj(o)]) > 1 for o in (a, b)): raise ValueError( "CircuitGraph.has_path does not work with operations that have been repeated. " "Consider using has_path_idx instead." ) return ( len( rx.digraph_dijkstra_shortest_paths( self._graph, self._inds_for_objs[WrappedObj(a)][0], self._inds_for_objs[WrappedObj(b)][0], weight_fn=None, default_weight=1.0, as_undirected=False, ) ) != 0 )
@cached_property def max_simultaneous_measurements(self): """Returns the maximum number of measurements on any wire in the circuit graph. This method counts the number of measurements for each wire and returns the maximum. **Examples** >>> dev = qml.device('default.qubit', wires=3) >>> def circuit_measure_max_once(): ... return qml.expval(qml.X(0)) >>> qnode = qml.QNode(circuit_measure_max_once, dev) >>> tape = qml.workflow.construct_tape(qnode)() >>> tape.graph.max_simultaneous_measurements 1 >>> def circuit_measure_max_twice(): ... return qml.expval(qml.X(0)), qml.probs(wires=0) >>> qnode = qml.QNode(circuit_measure_max_twice, dev) >>> tape = qml.workflow.construct_tape(qnode)() >>> tape.graph.max_simultaneous_measurements 2 Returns: int: the maximum number of measurements """ all_wires = [] for obs in self.observables: all_wires.extend(obs.wires.tolist()) a = np.array(all_wires) _, counts = np.unique(a, return_counts=True) return counts.max() if counts.size != 0 else 1 # qml.state() will result in an empty array