Source code for pennylane.devices.qutrit_mixed.simulate
# Copyright 2018-2024 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simulate a quantum script for a qutrit mixed state device."""
# pylint: disable=protected-access
from numpy.random import default_rng
import pennylane as qml
from pennylane.math.interface_utils import get_canonical_interface_name
from pennylane.typing import Result
from .apply_operation import apply_operation
from .initialize_state import create_initial_state
from .measure import measure
from .sampling import measure_with_samples
from .utils import QUDIT_DIM
def get_final_state(circuit, debugger=None, interface=None, **kwargs):
"""
Get the final state that results from executing the given quantum script.
This is an internal function that will be called by ``default.qutrit.mixed``.
Args:
circuit (.QuantumScript): The single circuit to simulate
debugger (._Debugger): The debugger to use
interface (str): The machine learning interface to create the initial state with
Returns:
Tuple[TensorLike, bool]: A tuple containing the final state of the quantum script and
whether the state has a batch dimension.
"""
circuit = circuit.map_to_standard_wires()
prep = None
if len(circuit) > 0 and isinstance(circuit[0], qml.operation.StatePrepBase):
prep = circuit[0]
interface = get_canonical_interface_name(interface)
state = create_initial_state(sorted(circuit.op_wires), prep, like=interface.get_like())
# initial state is batched only if the state preparation (if it exists) is batched
is_state_batched = bool(prep and prep.batch_size is not None)
for op in circuit.operations[bool(prep) :]:
state = apply_operation(
op,
state,
is_state_batched=is_state_batched,
debugger=debugger,
tape_shots=circuit.shots,
**kwargs,
)
# new state is batched if i) the old state is batched, or ii) the new op adds a batch dim
is_state_batched = is_state_batched or op.batch_size is not None
num_operated_wires = len(circuit.op_wires)
for i in range(len(circuit.wires) - num_operated_wires):
# If any measured wires are not operated on, we pad the density matrix with zeros.
# We know they belong at the end because the circuit is in standard wire-order
# Since it is a dm, we must pad it with 0s on the last row and last column
current_axis = num_operated_wires + i + is_state_batched
state = qml.math.stack(
([state] + [qml.math.zeros_like(state)] * (QUDIT_DIM - 1)), axis=current_axis
)
state = qml.math.stack(([state] + [qml.math.zeros_like(state)] * (QUDIT_DIM - 1)), axis=-1)
return state, is_state_batched
def measure_final_state( # pylint: disable=too-many-arguments
circuit, state, is_state_batched, rng=None, prng_key=None, readout_errors=None
) -> Result:
"""
Perform the measurements required by the circuit on the provided state.
This is an internal function that will be called by ``default.qutrit.mixed``.
Args:
circuit (.QuantumScript): The single circuit to simulate
state (TensorLike): The state to perform measurement on
is_state_batched (bool): Whether the state has a batch dimension or not.
rng (Union[None, int, array_like[int], SeedSequence, BitGenerator, Generator]): A
seed-like parameter matching that of ``seed`` for ``numpy.random.default_rng``.
If no value is provided, a default RNG will be used.
prng_key (Optional[jax.random.PRNGKey]): An optional ``jax.random.PRNGKey``. This is
the key to the JAX pseudo random number generator. Only for simulation using JAX.
If None, the default ``sample_state`` function and a ``numpy.random.default_rng``
will be for sampling.
readout_errors (List[Callable]): List of channels to apply to each wire being measured
to simulate readout errors.
Returns:
Tuple[TensorLike]: The measurement results
"""
circuit = circuit.map_to_standard_wires()
if not circuit.shots:
# analytic case
if len(circuit.measurements) == 1:
return measure(circuit.measurements[0], state, is_state_batched, readout_errors)
return tuple(
measure(mp, state, is_state_batched, readout_errors) for mp in circuit.measurements
)
# finite-shot case
rng = default_rng(rng)
results = tuple(
measure_with_samples(
mp,
state,
shots=circuit.shots,
is_state_batched=is_state_batched,
rng=rng,
prng_key=prng_key,
readout_errors=readout_errors,
)
for mp in circuit.measurements
)
if len(circuit.measurements) == 1:
return results[0]
if circuit.shots.has_partitioned_shots:
return tuple(zip(*results))
return results
[docs]def simulate( # pylint: disable=too-many-arguments
circuit: qml.tape.QuantumScript,
rng=None,
prng_key=None,
debugger=None,
interface=None,
readout_errors=None,
) -> Result:
"""Simulate a single quantum script.
This is an internal function that will be called by ``default.qutrit.mixed``.
Args:
circuit (QuantumTape): The single circuit to simulate
rng (Union[None, int, array_like[int], SeedSequence, BitGenerator, Generator]): A
seed-like parameter matching that of ``seed`` for ``numpy.random.default_rng``.
If no value is provided, a default RNG will be used.
prng_key (Optional[jax.random.PRNGKey]): An optional ``jax.random.PRNGKey``. This is
the key to the JAX pseudo random number generator. If None, a random key will be
generated. Only for simulation using JAX.
debugger (_Debugger): The debugger to use
interface (str): The machine learning interface to create the initial state with
readout_errors (List[Callable]): List of channels to apply to each wire being measured
to simulate readout errors.
Returns:
tuple(TensorLike): The results of the simulation
Note that this function can return measurements for non-commuting observables simultaneously.
This function assumes that all operations provide matrices.
>>> qs = qml.tape.QuantumScript([qml.TRX(1.2, wires=0)], [qml.expval(qml.GellMann(0, 3)), qml.probs(wires=(0,1))])
>>> simulate(qs)
(0.36235775447667357,
tensor([0.68117888, 0. , 0. , 0.31882112, 0. , 0. ], requires_grad=True))
"""
state, is_state_batched = get_final_state(
circuit, debugger=debugger, interface=interface, rng=rng, prng_key=prng_key
)
return measure_final_state(
circuit,
state,
is_state_batched,
rng=rng,
prng_key=prng_key,
readout_errors=readout_errors,
)
_modules/pennylane/devices/qutrit_mixed/simulate
Download Python script
Download Notebook
View on GitHub