Source code for pennylane.estimator.resource_operator
# Copyright 2025 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""This submodule contains base classes for resource operators."""
from __future__ import annotations
from abc import ABC, abstractmethod
from collections import defaultdict
from collections.abc import Hashable, Iterable
from typing import Any
import numpy as np
from pennylane.exceptions import ResourcesUndefinedError
from pennylane.operation import classproperty
from pennylane.queuing import QueuingManager
from pennylane.wires import Wires
from .resources_base import Resources
[docs]
class CompressedResourceOp:
r"""This class is a minimal representation of a :class:`~.pennylane.estimator.ResourceOperator`,
containing only the operator type and the necessary parameters to estimate its resources.
The ``CompressedResourceOp`` object is returned by the ``.resource_rep()`` method of resource
operators. The object is used by resource operators to efficiently compute the resource counts.
.. code-block:: pycon
>>> import pennylane.estimator as qre
>>> cmpr_op = qre.PauliRot.resource_rep(pauli_string="XYZ")
>>> print(cmpr_op)
CompressedResourceOp(PauliRot, num_wires=3, params={'pauli_string':'XYZ', 'precision':None})
Args:
op_type (type[ResourceOperator]): the class object of an operation which inherits from :class:`~.pennylane.estimator.ResourceOperator`
num_wires (int): The number of wires that the operation acts upon,
excluding any auxiliary wires that are allocated on decomposition.
params (dict): A dictionary containing the minimal pairs of parameter names and values
required to compute the resources for the given operator.
name (str | None): A custom name for the compressed operator. If not
provided, a name will be generated using ``op_type.make_tracking_name``
with the given parameters.
"""
def __init__(
self,
op_type: type[ResourceOperator],
num_wires: int,
params: dict | None = None,
name: str | None = None,
) -> None:
if not issubclass(op_type, ResourceOperator):
raise TypeError(f"op_type must be a subclass of ResourceOperator. Got {op_type}.")
self.op_type = op_type
self.num_wires = num_wires
self.params = params or {}
self._hashable_params = _make_hashable(params) if params else ()
self._name = name or op_type.tracking_name(**self.params)
def __hash__(self) -> int:
return hash((self.op_type, self.num_wires, self._hashable_params))
def __eq__(self, other: CompressedResourceOp) -> bool:
return (
isinstance(other, CompressedResourceOp)
and self.op_type == other.op_type
and self.num_wires == other.num_wires
and self.params == other.params
)
def __repr__(self) -> str:
class_name = self.__class__.__qualname__
op_type_name = self.op_type.__name__
num_wires_str = f"num_wires={self.num_wires}"
params_arg_str = ""
if self.params:
params = sorted(self.params.items())
params_str = ", ".join(f"{k!r}:{v!r}" for k, v in params)
params_arg_str = f", params={{{params_str}}}"
return f"{class_name}({op_type_name}, {num_wires_str}{params_arg_str})"
@property
def name(self) -> str:
r"""Returns the name of operator."""
return self._name
def _make_hashable(d: Any) -> tuple:
r"""Converts a potentially non-hashable object into a hashable tuple.
Args:
d (Any): The object to potentially convert to a hashable tuple.
This can be a dictionary, list, set, or an array.
Returns:
A hashable tuple representation of the input.
"""
if isinstance(d, Hashable):
return d
if isinstance(d, dict):
return tuple(sorted((_make_hashable(k), _make_hashable(v)) for k, v in d.items()))
if isinstance(d, (list, tuple)):
return tuple(_make_hashable(elem) for elem in d)
if isinstance(d, set):
return tuple(sorted(_make_hashable(elem) for elem in d))
if isinstance(d, np.ndarray):
return _make_hashable(d.tolist())
raise TypeError(f"Object of type {type(d)} is not hashable and cannot be converted.")
[docs]
class ResourceOperator(ABC):
r"""Base class to represent quantum operators according to the fundamental set of information
required for resource estimation.
A :class:`~.pennylane.estimator.ResourceOperator` is uniquely defined by its
name (the class type) and its resource parameters (:code:`op.resource_params`).
.. details::
:title: Usage Details
This example shows how to create a custom :class:`~.pennylane.estimator.ResourceOperator`
class for resource estimation. We use :class:`~.pennylane.QFT` as a well known gate for
simplicity.
.. code-block:: python
import pennylane.estimator as qre
class QFT(qre.ResourceOperator):
resource_keys = {"num_wires"} # the only parameter that its resources depend upon.
def __init__(self, num_wires, wires=None): # wire labels are optional
self.num_wires = num_wires
super().__init__(wires=wires)
@property
def resource_params(self) -> dict: # The keys must match the `resource_keys`
return {"num_wires": self.num_wires} # and values obtained from the operator.
@classmethod
def resource_rep(cls, num_wires): # Takes the same input as `resource_keys` and
params = {"num_wires": num_wires} # produces a compressed representation
return qre.CompressedResourceOp(cls, num_wires, params)
@classmethod
def resource_decomp(cls, num_wires): # `resource_keys` are input
# Get compressed reps for each gate in the decomposition:
swap = qre.resource_rep(qre.SWAP)
hadamard = qre.resource_rep(qre.Hadamard)
ctrl_phase_shift = qre.resource_rep(qre.ControlledPhaseShift)
# Figure out the associated counts for each type of gate:
swap_counts = num_wires // 2
hadamard_counts = num_wires
ctrl_phase_shift_counts = num_wires*(num_wires - 1) // 2
return [ # Return the decomposition
qre.GateCount(swap, swap_counts),
qre.GateCount(hadamard, hadamard_counts),
qre.GateCount(ctrl_phase_shift, ctrl_phase_shift_counts),
]
Which can be instantiated as a normal operation, but now contains the resources:
.. code-block:: pycon
>>> op = QFT(num_wires=3)
>>> print(qre.estimate(op, gate_set={'Hadamard', 'SWAP', 'ControlledPhaseShift'}))
--- Resources: ---
Total wires: 3
algorithmic wires: 3
allocated wires: 0
zero state: 0
any state: 0
Total gates : 7
'SWAP': 1,
'ControlledPhaseShift': 3,
'Hadamard': 3
"""
num_wires: int | None = None
# pylint: disable=unused-argument
def __init__(self, *args, wires=None, **kwargs) -> None:
self.wires = None
if wires is not None:
wires = Wires(wires)
self.wires = wires
self.queue()
super().__init__()
def __eq__(self, other):
"""Return True if the operators are equal."""
if not isinstance(other, ResourceOperator):
return False
return (
self.__class__ is other.__class__
and self.resource_params == other.resource_params
and self.num_wires == other.num_wires
)
[docs]
def queue(self, context: QueuingManager = QueuingManager) -> "ResourceOperator":
"""Append the operator to the Operator queue."""
context.append(self)
return self
@classproperty
@classmethod
def resource_keys(cls) -> set: # pylint: disable=no-self-use
"""The set of parameters that affects the resource requirement of the operator.
All resource decomposition functions for this operator class are expected to accept the
keyword arguments that match these keys exactly. The :func:`~pennylane.estimator.resource_rep`
function will also expect keyword arguments that match these keys when called with this
operator type.
The default implementation is an empty set, which is suitable for most operators.
"""
return set()
@property
@abstractmethod
def resource_params(self) -> dict:
"""A dictionary containing the minimal information needed to compute a resource estimate
of the operator's decomposition. The keys of this dictionary should match the
``resource_keys`` attribute of the operator class.
"""
[docs]
@classmethod
@abstractmethod
def resource_rep(cls, *args, **kwargs) -> CompressedResourceOp:
r"""Returns a compressed representation containing only the parameters of
the operator that are needed to estimate the resources."""
[docs]
def resource_rep_from_op(self) -> CompressedResourceOp:
r"""Returns a compressed representation directly from the operator"""
return self.__class__.resource_rep(**self.resource_params)
[docs]
@classmethod
@abstractmethod
def resource_decomp(cls, *args, **kwargs) -> list[GateCount]:
r"""Returns a list of actions that define the resources of the operator."""
[docs]
@classmethod
def adjoint_resource_decomp(cls, target_resource_params: dict | None = None) -> list[GateCount]:
r"""Returns a list representing the resources for the adjoint of the operator.
Args:
target_resource_params (dict | None): A dictionary containing the resource parameters
of the target operator.
"""
raise ResourcesUndefinedError
[docs]
@classmethod
def controlled_resource_decomp(
cls,
num_ctrl_wires: int,
num_zero_ctrl: int,
target_resource_params: dict | None = None,
) -> list[GateCount]:
r"""Returns a list representing the resources for a controlled version of the operator.
Args:
num_ctrl_wires (int): the number of qubits the
operation is controlled on
num_zero_ctrl (int): the number of control qubits, that are
controlled when in the :math:`|0\rangle` state
target_resource_params (dict | None): A dictionary containing the resource parameters
of the target operator.
"""
raise ResourcesUndefinedError
[docs]
@classmethod
def pow_resource_decomp(
cls, pow_z: int, target_resource_params: dict | None = None
) -> list[GateCount]:
r"""Returns a list representing the resources for an operator
raised to a power.
Args:
pow_z (int): exponent that the operator is being raised to
target_resource_params (dict | None): A dictionary containing the resource parameters
of the target operator.
"""
raise ResourcesUndefinedError
def __repr__(self) -> str:
str_rep = self.__class__.__name__ + "(" + str(self.resource_params) + ")"
return str_rep
def __mul__(self, scalar: int):
if not isinstance(scalar, int):
raise TypeError(f"Cannot multiply resource operator {self} with type {type(scalar)}.")
gate_types = defaultdict(int, {self.resource_rep_from_op(): scalar})
return Resources(zeroed_wires=0, algo_wires=self.num_wires, gate_types=gate_types)
def __matmul__(self, scalar: int):
if not isinstance(scalar, int):
raise TypeError(f"Cannot multiply resource operator {self} with type {type(scalar)}.")
gate_types = defaultdict(int, {self.resource_rep_from_op(): scalar})
return Resources(zeroed_wires=0, algo_wires=self.num_wires * scalar, gate_types=gate_types)
[docs]
def add_series(self, other):
"""Adds a :class:`~.pennylane.estimator.ResourceOperator` or :class:`~.pennylane.estimator.Resources` in series.
Args:
other (:class:`~.pennylane.estimator.Resources`|:class:`~.pennylane.estimator.ResourceOperator`): The other object to combine with, it can be
another ``ResourceOperator`` or a ``Resources`` object.
Returns:
:class:`~.pennylane.estimator.Resources`: added ``Resources``
"""
if isinstance(other, ResourceOperator):
return (1 * self).add_series(1 * other)
if isinstance(other, Resources):
return (1 * self).add_series(other)
raise TypeError(f"Cannot add resource operator {self} with type {type(other)}.")
[docs]
def add_parallel(self, other):
"""Adds a :class:`~.pennylane.estimator.ResourceOperator` or :class:`~.pennylane.estimator.Resources` in parallel.
Args:
other (:class:`~.pennylane.estimator.Resources`|:class:`~.pennylane.estimator.ResourceOperator`): The other object to combine with, it can be
another ``ResourceOperator`` or a ``Resources`` object.
Returns:
:class:`~.pennylane.estimator.Resources`: added ``Resources``
"""
if isinstance(other, ResourceOperator):
return (1 * self).add_parallel(1 * other)
if isinstance(other, Resources):
return (1 * self).add_parallel(other)
raise TypeError(f"Cannot add resource operator {self} with type {type(other)}.")
__rmul__ = __mul__
__rmatmul__ = __matmul__
[docs]
@classmethod
def tracking_name(cls, *args, **kwargs) -> str:
r"""Returns a name used to track the operator during resource estimation."""
return cls.__name__
def _dequeue(
op_to_remove: "ResourceOperator" | Iterable,
context: QueuingManager = QueuingManager,
):
"""Remove the given resource operator(s) from the Operator queue."""
if not isinstance(op_to_remove, Iterable):
op_to_remove = [op_to_remove]
for op in op_to_remove:
context.remove(op)
[docs]
class GateCount:
r"""Stores a lightweight representation of a gate and its number of occurrences in a decomposition.
The decomposition of a resource operator is tracked as a sequence of gates and the corresponding
number of times those gates occur in the decomposition. For a given resource operator, this
decomposition can be accessed with the operator's ``.resource_decomp()`` method. The method
returns a sequence of ``GateCount`` objects where each object groups the two pieces of
information, gate and counts, for the decomposition.
For example, the decomposition of the Quantum Fourier Transform (QFT)
contains 3 ``Hadamard`` gates, 1 ``SWAP`` gate and 3 ``ControlledPhaseShift`` gates.
.. code-block:: pycon
>>> import pennylane.estimator as qre
>>> lst_of_gate_counts = qre.QFT.resource_decomp(num_wires=3)
>>> lst_of_gate_counts
[(3 x Hadamard), (1 x SWAP), (3 x ControlledPhaseShift)]
**Example**
This example creates an object to count ``5`` instances of :code:`QFT` acting
on three wires:
>>> import pennylane.estimator as qre
>>> qft = qre.resource_rep(qre.QFT, {"num_wires": 3})
>>> counts = qre.GateCount(qft, 5)
>>> counts
(5 x QFT(3))
Args:
gate (CompressedResourceOp): The compressed resource representation of the gate being counted.
counts (int | None): The number of occurrences of the quantum gate in the circuit or
decomposition. Defaults to ``1``.
Returns:
GateCount: The container object holding both pieces of information.
"""
def __init__(self, gate: CompressedResourceOp, count: int | None = 1) -> None:
self.gate = gate
self.count = count
def __mul__(self, other):
if isinstance(other, int):
return self.__class__(self.gate, self.count * other)
raise NotImplementedError
def __add__(self, other):
if isinstance(other, self.__class__) and (self.gate == other.gate):
return self.__class__(self.gate, self.count + other.count)
raise NotImplementedError
__rmul__ = __mul__
def __eq__(self, other) -> bool:
if not isinstance(other, GateCount):
return False
return self.gate == other.gate and self.count == other.count
def __repr__(self) -> str:
return f"({self.count} x {self.gate._name})"
def resource_rep(
resource_op: type[ResourceOperator],
resource_params: dict | None = None,
) -> CompressedResourceOp:
r"""Produce a compressed representation of the resource operator to be used when
tracking resources.
This function produces the expected compressed representation of a resource operator class.
The compressed representation
(:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`) is used instead of
the resource operator to enable faster performance of the resource estimation functionality.
This function is used when defining the resource decompositions of a resource operator.
Specifically, all resource decompositions are represented as a list of operators
(``CompressedResourceOp``) and the number of times they occur in the decomposition (``int``).
Those two pieces of information are tracked inside the
:class:`~.pennylane.estimator.resource_operator.GateCount` class.
.. note::
The :code:`resource_params` dictionary should specify the required resource
parameters of the operator. The required resource parameters are listed in the
:code:`resource_keys` class property of every :class:`~.pennylane.estimator.ResourceOperator`.
Args:
resource_op (type[ResourceOperator]]): The type of operator for which to retrieve the compact representation.
resource_params (dict | None): The required set of parameters to specify the operator. Defaults to ``None``.
Returns:
:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: A compressed representation of a resource operator
**Example**
This example shows how to obtain the compressed resource representation for the quantum Fourier
transform (:code:`QFT`) operation. We begin by checking what parameters are required for
resource estimation and then provide them accordingly:
>>> import pennylane.estimator as qre
>>> qre.QFT.resource_keys
{'num_wires'}
>>> cmpr_qft = qre.resource_rep(
... qre.QFT,
... {"num_wires": 3},
... )
>>> cmpr_qft
CompressedResourceOp(QFT, num_wires=3, params={'num_wires':3})
.. details::
:title: Usage Details
In this example we create a custom resource decomposition function which returns the
decomposition using the ``GateCount`` class. We use the ``resource_rep`` function to
obtain the compressed representations of each gate in the decomposition.
.. code-block:: python
import pennylane.estimator as qre
def custom_RX_decomp(precision): # RX = H @ RZ @ H
h = qre.resource_rep(qre.Hadamard)
rz = qre.resource_rep(qre.RZ, resource_params={"precision": None})
return [qre.GateCount(h, 2), qre.GateCount(rz, 1)]
.. code-block:: pycon
>>> print(qre.estimate(qre.RX(), gate_set={"Hadamard", "RZ", "T"}))
--- Resources: ---
Total wires: 1
algorithmic wires: 1
allocated wires: 0
zero state: 0
any state: 0
Total gates : 44
'T': 44
We override the default decomposition using the
:class:`~.pennylane.estimator.resource_config.ResourceConfig` class.
.. code-block:: pycon
>>> config = qre.ResourceConfig()
>>> config.set_decomp(qre.RX, custom_RX_decomp)
>>> print(qre.estimate(qre.RX(), gate_set={"Hadamard", "RZ", "T"}, config=config))
--- Resources: ---
Total wires: 1
algorithmic wires: 1
allocated wires: 0
zero state: 0
any state: 0
Total gates : 3
'RZ': 1,
'Hadamard': 2
"""
resource_params = resource_params or {}
return resource_op.resource_rep(**resource_params)
_modules/pennylane/estimator/resource_operator
Download Python script
Download Notebook
View on GitHub