Source code for pennylane.gradients.classical_jacobian

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains the classical Jacobian transform.
"""
# pylint: disable=import-outside-toplevel
import numpy as np

import pennylane as qml


[docs]def classical_jacobian(qnode, argnum=None, expand_fn=None, trainable_only=True): r"""Returns a function to extract the Jacobian matrix of the classical part of a QNode. This transform allows the classical dependence between the QNode arguments and the quantum gate arguments to be extracted. Args: qnode (pennylane.QNode): QNode to compute the (classical) Jacobian of argnum (int or Sequence[int]): indices of QNode arguments with respect to which the (classical) Jacobian is computed expand_fn (None or function): an expansion function (if required) to be applied to the QNode quantum tape before the classical Jacobian is computed Returns: function: Function which accepts the same arguments as the QNode. When called, this function will return the Jacobian of the QNode gate arguments with respect to the QNode arguments indexed by ``argnum``. **Example** Consider the following QNode: >>> @qml.qnode(dev) ... def circuit(weights): ... qml.RX(weights[0], wires=0) ... qml.RY(0.2 * weights[0], wires=1) ... qml.RY(2.5, wires=0) ... qml.RZ(weights[1] ** 2, wires=1) ... qml.RX(weights[2], wires=1) ... return qml.expval(qml.Z(0) @ qml.Z(1)) We can use this transform to extract the relationship :math:`f: \mathbb{R}^n \rightarrow \mathbb{R}^m` between the input QNode arguments :math:`w` and the gate arguments :math:`g`, for a given value of the QNode arguments: >>> cjac_fn = qml.gradients.classical_jacobian(circuit) >>> weights = np.array([1., 1., 0.6], requires_grad=True) >>> cjac = cjac_fn(weights) >>> print(cjac) [[1. 0. 0. ] [0.2 0. 0. ] [0. 2. 0. ] [0. 0. 1. ]] The returned Jacobian has rows corresponding to gate arguments, and columns corresponding to QNode arguments; that is, .. math:: J_{ij} = \frac{\partial}{\partial g_i} f(w_j). We can see that: - The zeroth element of ``weights`` is repeated on the first two gates generated by the QNode. - The third row consisting of all zeros indicates that the third gate ``RY(2.5)`` does not depend on the ``weights``. - The quadratic dependence of the fourth gate argument yields :math:`2\cdot 0.6=1.2`. .. note:: The QNode is constructed during this operation. For a QNode with multiple QNode arguments, the arguments with respect to which the Jacobian is computed can be controlled with the ``argnum`` keyword argument. The output and its format depend on the backend: .. list-table:: Output format of ``classical_jacobian`` :widths: 15 25 25 35 :header-rows: 1 * - Interface - ``argnum=None`` - ``type(argnum)=int`` - ``type(argnum) = Sequence[int]`` * - ``'autograd'`` - ``tuple(array)`` [1] - ``array`` - ``tuple(array)`` * - ``'jax'`` - ``array`` [2] - ``array`` - ``tuple(array)`` * - ``'tf'`` - ``tuple(array)`` - ``array`` - ``tuple(array)`` * - ``'torch'`` - ``tuple(array)`` - ``array`` - ``tuple(array)`` [1] If there only is one trainable QNode argument, the tuple is unpacked to a single ``array``, as is the case for :func:`.jacobian`. [2] For JAX, ``argnum=None`` defaults to ``argnum=0`` in contrast to all other interfaces. This means that only the classical Jacobian with respect to the first QNode argument is computed if no ``argnum`` is provided. **Example with ``argnum``** >>> @qml.qnode(dev) ... def circuit(x, y, z): ... qml.RX(qml.math.sin(x), wires=0) ... qml.CNOT(wires=[0, 1]) ... qml.RY(y ** 2, wires=1) ... qml.RZ(1 / z, wires=1) ... return qml.expval(qml.Z(0) @ qml.Z(1)) >>> jac_fn = qml.gradients.classical_jacobian(circuit, argnum=[1, 2]) >>> x, y, z = np.array([0.1, -2.5, 0.71]) >>> jac_fn(x, y, z) (array([-0., -5., -0.]), array([-0. , -0. , -1.98373339])) Only the Jacobians with respect to the arguments ``x`` and ``y`` were computed, and returned as a tuple of ``arrays``. """ def classical_preprocessing(*args, **kwargs): """Returns the trainable gate parameters for a given QNode input.""" kwargs.pop("shots", None) kwargs.pop("argnums", None) qnode.construct(args, kwargs) tape = qnode.qtape if expand_fn is not None: tape = expand_fn(tape) return qml.math.stack(tape.get_parameters(trainable_only=trainable_only)) wrapper_argnum = argnum if argnum is not None else None def qnode_wrapper(*args, **kwargs): # pylint: disable=inconsistent-return-statements old_interface = qnode.interface if old_interface == "auto": qnode.interface = qml.math.get_interface(*args, *list(kwargs.values())) if qnode.interface == "autograd": jac = qml.jacobian(classical_preprocessing, argnum=wrapper_argnum)(*args, **kwargs) if qnode.interface == "torch": import torch def _jacobian(*args, **kwargs): # pylint: disable=unused-argument jac = torch.autograd.functional.jacobian(classical_preprocessing, args) torch_argnum = ( wrapper_argnum if wrapper_argnum is not None else qml.math.get_trainable_indices(args) ) if np.isscalar(torch_argnum): jac = jac[torch_argnum] else: jac = tuple((jac[idx] for idx in torch_argnum)) return jac jac = _jacobian(*args, **kwargs) if qnode.interface in ["jax", "jax-jit"]: import jax argnum = 0 if wrapper_argnum is None else wrapper_argnum def _jacobian(*args, **kwargs): return jax.jacobian(classical_preprocessing, argnums=argnum)(*args, **kwargs) jac = _jacobian(*args, **kwargs) if qnode.interface == "tf": import tensorflow as tf def _jacobian(*args, **kwargs): if np.isscalar(wrapper_argnum): sub_args = args[wrapper_argnum] elif wrapper_argnum is None: sub_args = args else: sub_args = tuple((args[i] for i in wrapper_argnum)) with tf.GradientTape() as tape: gate_params = classical_preprocessing(*args, **kwargs) jac = tape.jacobian(gate_params, sub_args) return jac jac = _jacobian(*args, **kwargs) if old_interface == "auto": qnode.interface = "auto" return jac return qnode_wrapper