Source code for pennylane.gradients.hadamard_gradient
# Copyright 2023 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains functions for computing the Hadamard-test gradient
of a qubit-based quantum tape.
"""
from functools import partial
import numpy as np
import pennylane as qml
from pennylane import transform
from pennylane.gradients.gradient_transform import _contract_qjac_with_cjac
from pennylane.gradients.metric_tensor import _get_aux_wire
from pennylane.operation import has_grad_method, is_measurement, is_trainable, not_tape
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms.tape_expand import create_expand_fn
from pennylane.typing import PostprocessingFn
from .gradient_transform import (
_all_zero_grad,
_no_trainable_grad,
assert_no_state_returns,
assert_no_trainable_tape_batching,
assert_no_variance,
choose_trainable_params,
find_and_validate_gradient_methods,
)
# pylint: disable=unused-argument,invalid-unary-operand-type
_expand_invalid_trainable_doc_hadamard = """Expand out a tape so that it supports differentiation
of requested operations with the Hadamard test gradient.
This is achieved by decomposing all trainable operations that
are not in the Hadamard compatible list until all resulting operations
are in the list up to maximum depth ``depth``. Note that this
might not be possible, in which case the gradient rule will fail to apply.
Args:
tape (.QuantumTape): the input tape to expand
depth (int) : the maximum expansion depth
**kwargs: additional keyword arguments are ignored
Returns:
.QuantumTape: the expanded tape
"""
hadamard_comp_list = [
"RX",
"RY",
"RZ",
"Rot",
"PhaseShift",
"U1",
"CRX",
"CRY",
"CRZ",
"IsingXX",
"IsingYY",
"IsingZZ",
]
@qml.BooleanFn
def _is_hadamard_grad_compatible(obj):
"""Check if the operation is compatible with Hadamard gradient transform."""
return obj.name in hadamard_comp_list
expand_invalid_trainable_hadamard_gradient = create_expand_fn(
depth=None,
stop_at=not_tape
| is_measurement
| (~is_trainable)
| (_is_hadamard_grad_compatible & has_grad_method),
docstring=_expand_invalid_trainable_doc_hadamard,
)
def _expand_transform_hadamard(
tape: QuantumScript,
argnum=None,
aux_wire=None,
device_wires=None,
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
"""Expand function to be applied before hadamard gradient."""
expanded_tape = expand_invalid_trainable_hadamard_gradient(tape)
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
return [expanded_tape], null_postprocessing
[docs]@partial(
transform,
expand_transform=_expand_transform_hadamard,
classical_cotransform=_contract_qjac_with_cjac,
final_transform=True,
)
def hadamard_grad(
tape: QuantumScript,
argnum=None,
aux_wire=None,
device_wires=None,
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
r"""Transform a circuit to compute the Hadamard test gradient of all gates
with respect to their inputs.
Args:
tape (QNode or QuantumTape): quantum circuit to differentiate
argnum (int or list[int] or None): Trainable tape parameter indices to differentiate
with respect to. If not provided, the derivatives with respect to all
trainable parameters are returned. Note that the indices are with respect to
the list of trainable parameters.
aux_wire (pennylane.wires.Wires): Auxiliary wire to be used for the Hadamard tests.
If ``None`` (the default), a suitable wire is inferred from the wires used in
the original circuit and ``device_wires``.
device_wires (pennylane.wires.Wires): Wires of the device that are going to be used for the
gradient. Facilitates finding a default for ``aux_wire`` if ``aux_wire`` is ``None``.
Returns:
qnode (QNode) or tuple[List[QuantumTape], function]:
The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.
Executing this circuit will provide the Jacobian in the form of a tensor, a tuple, or a
nested tuple depending upon the nesting structure of measurements in the original circuit.
For a variational evolution :math:`U(\mathbf{p}) \vert 0\rangle` with :math:`N` parameters
:math:`\mathbf{p}`, consider the expectation value of an observable :math:`O`:
.. math::
f(\mathbf{p}) = \langle \hat{O} \rangle(\mathbf{p}) = \langle 0 \vert
U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p}) \vert 0\rangle.
The gradient of this expectation value can be calculated via the Hadamard test gradient:
.. math::
\frac{\partial f}{\partial \mathbf{p}} = -2 \Im[\bra{0} \hat{O} G \ket{0}] = i \left(\bra{0} \hat{O} G \ket{
0} - \bra{0} G\hat{O} \ket{0}\right) = -2 \bra{+}\bra{0} ctrl-G^{\dagger} (\hat{Y} \otimes \hat{O}) ctrl-G
\ket{+}\ket{0}
Here, :math:`G` is the generator of the unitary :math:`U`.
**Example**
This transform can be registered directly as the quantum gradient transform
to use during autodifferentiation:
>>> import jax
>>> dev = qml.device("default.qubit")
>>> @qml.qnode(dev, interface="jax", diff_method="hadamard")
... def circuit(params):
... qml.RX(params[0], wires=0)
... qml.RY(params[1], wires=0)
... qml.RX(params[2], wires=0)
... return qml.expval(qml.Z(0)), qml.probs(wires=0)
>>> params = jax.numpy.array([0.1, 0.2, 0.3])
>>> jax.jacobian(circuit)(params)
(Array([-0.3875172 , -0.18884787, -0.38355704], dtype=float64),
Array([[-0.1937586 , -0.09442394, -0.19177852],
[ 0.1937586 , 0.09442394, 0.19177852]], dtype=float64))
.. details::
:title: Usage Details
This gradient transform can be applied directly to :class:`QNode <pennylane.QNode>`
objects. However, for performance reasons, we recommend providing the gradient transform
as the ``diff_method`` argument of the QNode decorator, and differentiating with your
preferred machine learning framework.
>>> dev = qml.device("default.qubit")
>>> @qml.qnode(dev)
... def circuit(params):
... qml.RX(params[0], wires=0)
... qml.RY(params[1], wires=0)
... qml.RX(params[2], wires=0)
... return qml.expval(qml.Z(0))
>>> params = np.array([0.1, 0.2, 0.3], requires_grad=True)
>>> qml.gradients.hadamard_grad(circuit)(params)
tensor([-0.3875172 , -0.18884787, -0.38355704], requires_grad=True)
This quantum gradient transform can also be applied to low-level
:class:`~.QuantumTape` objects. This will result in no implicit quantum
device evaluation. Instead, the processed tapes, and post-processing
function, which together define the gradient are directly returned:
>>> ops = [qml.RX(params[0], 0), qml.RY(params[1], 0), qml.RX(params[2], 0)]
>>> measurements = [qml.expval(qml.Z(0))]
>>> tape = qml.tape.QuantumTape(ops, measurements)
>>> gradient_tapes, fn = qml.gradients.hadamard_grad(tape)
>>> gradient_tapes
[<QuantumScript: wires=[0, 1], params=3>,
<QuantumScript: wires=[0, 1], params=3>,
<QuantumScript: wires=[0, 1], params=3>]
This can be useful if the underlying circuits representing the gradient
computation need to be analyzed.
Note that ``argnum`` refers to the index of a parameter within the list of trainable
parameters. For example, if we have:
>>> tape = qml.tape.QuantumScript(
... [qml.RX(1.2, wires=0), qml.RY(2.3, wires=0), qml.RZ(3.4, wires=0)],
... [qml.expval(qml.Z(0))],
... trainable_params = [1, 2]
... )
>>> qml.gradients.hadamard_grad(tape, argnum=1)
The code above will differentiate the third parameter rather than the second.
The output tapes can then be evaluated and post-processed to retrieve the gradient:
>>> dev = qml.device("default.qubit")
>>> fn(qml.execute(gradient_tapes, dev, None))
(tensor(-0.3875172, requires_grad=True),
tensor(-0.18884787, requires_grad=True),
tensor(-0.38355704, requires_grad=True))
This transform can be registered directly as the quantum gradient transform
to use during autodifferentiation:
>>> dev = qml.device("default.qubit")
>>> @qml.qnode(dev, interface="jax", diff_method="hadamard")
... def circuit(params):
... qml.RX(params[0], wires=0)
... qml.RY(params[1], wires=0)
... qml.RX(params[2], wires=0)
... return qml.expval(qml.Z(0))
>>> params = jax.numpy.array([0.1, 0.2, 0.3])
>>> jax.jacobian(circuit)(params)
Array([-0.3875172 , -0.18884787, -0.38355704], dtype=float64)
If you use custom wires on your device, you need to pass an auxiliary wire.
>>> dev_wires = ("a", "c")
>>> dev = qml.device("default.qubit", wires=dev_wires)
>>> @qml.qnode(dev, interface="jax", diff_method="hadamard", aux_wire="c", device_wires=dev_wires)
>>> def circuit(params):
... qml.RX(params[0], wires="a")
... qml.RY(params[1], wires="a")
... qml.RX(params[2], wires="a")
... return qml.expval(qml.Z("a"))
>>> params = jax.numpy.array([0.1, 0.2, 0.3])
>>> jax.jacobian(circuit)(params)
Array([-0.3875172 , -0.18884787, -0.38355704], dtype=float64)
.. note::
``hadamard_grad`` will decompose the operations that are not in the list of supported operations.
- :class:`~.pennylane.RX`
- :class:`~.pennylane.RY`
- :class:`~.pennylane.RZ`
- :class:`~.pennylane.Rot`
- :class:`~.pennylane.PhaseShift`
- :class:`~.pennylane.U1`
- :class:`~.pennylane.CRX`
- :class:`~.pennylane.CRY`
- :class:`~.pennylane.CRZ`
- :class:`~.pennylane.IsingXX`
- :class:`~.pennylane.IsingYY`
- :class:`~.pennylane.IsingZZ`
The expansion will fail if a suitable decomposition in terms of supported operation is not found.
The number of trainable parameters may increase due to the decomposition.
"""
transform_name = "Hadamard test"
assert_no_state_returns(tape.measurements, transform_name)
assert_no_variance(tape.measurements, transform_name)
assert_no_trainable_tape_batching(tape, transform_name)
if len(tape.measurements) > 1 and tape.shots.has_partitioned_shots:
raise NotImplementedError(
"hadamard gradient does not support multiple measurements with partitioned shots."
)
if argnum is None and not tape.trainable_params:
return _no_trainable_grad(tape)
trainable_params = choose_trainable_params(tape, argnum)
diff_methods = find_and_validate_gradient_methods(tape, "analytic", trainable_params)
if all(g == "0" for g in diff_methods.values()):
return _all_zero_grad(tape)
argnum = [i for i, dm in diff_methods.items() if dm == "A"]
# Validate or get default for aux_wire
aux_wire = _get_aux_wire(aux_wire, tape, device_wires)
g_tapes, processing_fn = _expval_hadamard_grad(tape, argnum, aux_wire)
return g_tapes, processing_fn
def _expval_hadamard_grad(tape, argnum, aux_wire):
r"""Compute the Hadamard test gradient of a tape that returns an expectation value (probabilities are expectations
values) with respect to a given set of all trainable gate parameters.
The auxiliary wire is the wire which is used to apply the Hadamard gates and controlled gates.
"""
# pylint: disable=too-many-statements
argnums = argnum or tape.trainable_params
g_tapes = []
coeffs = []
gradient_data = []
for trainable_param_idx, _ in enumerate(tape.trainable_params):
if trainable_param_idx not in argnums:
# parameter has zero gradient
gradient_data.append(0)
continue
trainable_op, idx, p_idx = tape.get_operation(trainable_param_idx)
ops_to_trainable_op = tape.operations[: idx + 1]
ops_after_trainable_op = tape.operations[idx + 1 :]
# Get a generator and coefficients
sub_coeffs, generators = _get_generators(trainable_op)
coeffs.extend(sub_coeffs)
num_tape = 0
for gen in generators:
if isinstance(trainable_op, qml.Rot):
# We only registered PauliZ as generator for Rot, therefore we need to apply some gates
# before and after the generator for the first two parameters.
if p_idx == 0:
# Move the Rot gate past the generator
op_before_trainable_op = ops_to_trainable_op.pop(-1)
ops_after_trainable_op = [op_before_trainable_op] + ops_after_trainable_op
elif p_idx == 1:
# Apply additional rotations that effectively move the generator to the middle of Rot
ops_to_add_before = [
qml.RZ(-trainable_op.data[2], wires=trainable_op.wires),
qml.RX(np.pi / 2, wires=trainable_op.wires),
]
ops_to_trainable_op.extend(ops_to_add_before)
ops_to_add_after = [
qml.RX(-np.pi / 2, wires=trainable_op.wires),
qml.RZ(trainable_op.data[2], wires=trainable_op.wires),
]
ops_after_trainable_op = ops_to_add_after + ops_after_trainable_op
ctrl_gen = [qml.ctrl(gen, control=aux_wire)]
hadamard = [qml.Hadamard(wires=aux_wire)]
ops = ops_to_trainable_op + hadamard + ctrl_gen + hadamard + ops_after_trainable_op
measurements = []
# Add the Y measurement on the aux qubit
for m in tape.measurements:
if m.obs:
obs_new = [m.obs]
else:
m_wires = m.wires if len(m.wires) > 0 else tape.wires
obs_new = [qml.Z(i) for i in m_wires]
obs_new.append(qml.Y(aux_wire))
obs_new = qml.prod(*obs_new)
if isinstance(m, qml.measurements.ExpectationMP):
measurements.append(qml.expval(op=obs_new))
else:
measurements.append(qml.probs(op=obs_new))
new_tape = qml.tape.QuantumScript(ops=ops, measurements=measurements, shots=tape.shots)
_rotations, _measurements = qml.tape.tape.rotations_and_diagonal_measurements(new_tape)
new_ops = new_tape.operations + _rotations
new_tape = qml.tape.QuantumScript(
new_ops,
_measurements,
shots=new_tape.shots,
trainable_params=new_tape.trainable_params,
)
num_tape += 1
g_tapes.append(new_tape)
gradient_data.append(num_tape)
multi_measurements = len(tape.measurements) > 1
multi_params = len(tape.trainable_params) > 1
measurements_probs = [
idx
for idx, m in enumerate(tape.measurements)
if isinstance(m, qml.measurements.ProbabilityMP)
]
def _postprocess_probs(res, measurement, projector):
num_wires_probs = len(measurement.wires)
if num_wires_probs == 0:
num_wires_probs = tape.num_wires
res = qml.math.reshape(res, (2**num_wires_probs, 2))
return qml.math.tensordot(res, projector, axes=[[1], [0]])
def processing_fn(results): # pylint: disable=too-many-branches
"""Post processing function for computing a hadamard gradient."""
final_res = []
for coeff, res in zip(coeffs, results):
if isinstance(res, tuple):
new_val = [qml.math.convert_like(2 * coeff * r, r) for r in res]
else:
new_val = qml.math.convert_like(2 * coeff * res, res)
final_res.append(new_val)
# Post process for probs
if measurements_probs:
projector = np.array([1, -1])
like = final_res[0][0] if multi_measurements else final_res[0]
projector = qml.math.convert_like(projector, like)
for idx, res in enumerate(final_res):
if multi_measurements:
for prob_idx in measurements_probs:
final_res[idx][prob_idx] = _postprocess_probs(
res[prob_idx], tape.measurements[prob_idx], projector
)
else:
prob_idx = measurements_probs[0]
final_res[idx] = _postprocess_probs(res, tape.measurements[prob_idx], projector)
grads = []
idx = 0
for num_tape in gradient_data:
if num_tape == 0:
grads.append(qml.math.zeros(()))
elif num_tape == 1:
grads.append(final_res[idx])
idx += 1
else:
result = final_res[idx : idx + num_tape]
if multi_measurements:
grads.append(
[qml.math.array(qml.math.sum(res, axis=0)) for res in zip(*result)]
)
else:
grads.append(qml.math.array(qml.math.sum(result)))
idx += num_tape
if not multi_measurements and not multi_params:
return grads[0]
if not (multi_params and multi_measurements):
if multi_measurements:
return tuple(grads[0])
return tuple(grads)
# Reordering to match the right shape for multiple measurements
grads_reorder = [[0] * len(tape.trainable_params) for _ in range(len(tape.measurements))]
for i in range(len(tape.measurements)):
for j in range(len(tape.trainable_params)):
grads_reorder[i][j] = grads[j][i]
grads_tuple = tuple(tuple(elem) for elem in grads_reorder)
return grads_tuple
return g_tapes, processing_fn
def _get_generators(trainable_op):
"""From a trainable operation, extract the unitary generators and their coefficients. If an operation is added here
one needs to also update the list of supported operation in the expand function given to the gradient transform.
"""
# For PhaseShift, we need to separate the generator in two unitaries (Hardware compatibility)
if isinstance(trainable_op, (qml.PhaseShift, qml.U1)):
generators = [qml.Z(trainable_op.wires)]
coeffs = [-0.5]
elif isinstance(trainable_op, qml.CRX):
generators = [
qml.X(trainable_op.wires[1]),
qml.prod(qml.Z(trainable_op.wires[0]), qml.X(trainable_op.wires[1])),
]
coeffs = [-0.25, 0.25]
elif isinstance(trainable_op, qml.CRY):
generators = [
qml.Y(trainable_op.wires[1]),
qml.prod(qml.Z(trainable_op.wires[0]), qml.Y(trainable_op.wires[1])),
]
coeffs = [-0.25, 0.25]
elif isinstance(trainable_op, qml.CRZ):
generators = [
qml.Z(trainable_op.wires[1]),
qml.prod(qml.Z(trainable_op.wires[0]), qml.Z(trainable_op.wires[1])),
]
coeffs = [-0.25, 0.25]
elif isinstance(trainable_op, qml.IsingXX):
generators = [qml.prod(qml.X(trainable_op.wires[0]), qml.X(trainable_op.wires[1]))]
coeffs = [-0.5]
elif isinstance(trainable_op, qml.IsingYY):
generators = [qml.prod(qml.Y(trainable_op.wires[0]), qml.Y(trainable_op.wires[1]))]
coeffs = [-0.5]
elif isinstance(trainable_op, qml.IsingZZ):
generators = [qml.prod(qml.Z(trainable_op.wires[0]), qml.Z(trainable_op.wires[1]))]
coeffs = [-0.5]
# For rotation it is possible to only use PauliZ by applying some other rotations in the main function
elif isinstance(trainable_op, qml.Rot):
generators = [qml.Z(trainable_op.wires)]
coeffs = [-0.5]
else:
generators = trainable_op.generator().ops
coeffs = trainable_op.generator().coeffs
return coeffs, generators
_modules/pennylane/gradients/hadamard_gradient
Download Python script
Download Notebook
View on GitHub