Source code for pennylane.gradients.vjp

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains functions for computing the vector-Jacobian product
of tapes.
"""
import autograd

# pylint: disable=no-member, too-many-branches
import numpy as np

import pennylane as qml


def _convert(jac, dy_row):
    """Utility to convert and cast the jacobian as dy_row."""
    if isinstance(jac, tuple):
        jac_new = []
        for j in jac:
            j_ = qml.math.convert_like(j, dy_row)
            j_ = qml.math.cast_like(j_, dy_row)
            jac_new.append(j_)
        jac = tuple(jac_new)
    else:
        jac = qml.math.convert_like(jac, dy_row)
        jac = qml.math.cast_like(jac, dy_row)
    return jac


def _all_close_to_zero(dy):
    """
    Check if all entries of dy are close to 0. dy can also be a nested tuple
    structure of tensors, in which case this returns True iff all tensors are
    close to 0
    """
    if not isinstance(dy, (list, tuple)):
        return qml.math.allclose(dy, 0)

    # call this method recursively
    return all(_all_close_to_zero(dy_) for dy_ in dy)


[docs]def compute_vjp_single(dy, jac, num=None): """Convenience function to compute the vector-Jacobian product for a given vector of gradient outputs and a Jacobian for a single measurement tape. Args: dy (tensor_like): vector of gradient outputs jac (tensor_like, tuple): Jacobian matrix num (int): The length of the flattened ``dy`` argument. This is an optional argument, but can be useful to provide if ``dy`` potentially has no shape (for example, due to tracing or just-in-time compilation). Returns: tensor_like: the vector-Jacobian product **Examples** 1. For a single parameter and a single measurement without shape (e.g. expval, var): .. code-block:: pycon >>> jac = np.array(0.1) >>> dy = np.array(2) >>> compute_vjp_single(dy, jac) array([0.2]) 2. For a single parameter and a single measurement with shape (e.g. probs): .. code-block:: pycon >>> jac = np.array([0.1, 0.2]) >>> dy = np.array([1.0, 1.0]) >>> compute_vjp_single(dy, jac) array([0.3]) 3. For multiple parameters (in this case 2 parameters) and a single measurement without shape (e.g. expval, var): .. code-block:: pycon >>> jac = tuple([np.array(0.1), np.array(0.2)]) >>> dy = np.array(2) >>> compute_vjp_single(dy, jac) array([0.2, 0.4]) 4. For multiple parameters (in this case 2 parameters) and a single measurement with shape (e.g. probs): .. code-block:: pycon >>> jac = tuple([np.array([0.1, 0.2]), np.array([0.3, 0.4])]) >>> dy = np.array([1.0, 2.0]) >>> compute_vjp_single(dy, jac) array([0.5, 1.1]) """ if jac is None: return None dy_row = qml.math.reshape(dy, [-1]) if num is None: num = qml.math.shape(dy_row)[0] if not isinstance(dy_row, np.ndarray): jac = _convert(jac, dy_row) # Note: For generality, all exception type warnings are disabled. # TODO: Excplictly catalogue and update raises for known types. # Single measurement with a single param if not isinstance(jac, (tuple, autograd.builtins.SequenceBox)): # No trainable parameters if jac.shape == (0,): res = qml.math.zeros((1, 0)) return res # Single measurement with no dimension e.g. expval or with dimension e.g. probs if num == 1: jac = qml.math.squeeze(jac) jac = qml.math.reshape(jac, (-1, 1)) try: res = dy_row @ jac except Exception: # pylint: disable=broad-except res = qml.math.tensordot(jac, dy_row, [[0], [0]]) # Single measurement with multiple params else: # No trainable parameters (adjoint) if len(jac) == 0: res = qml.math.zeros((1, 0)) return res # Single measurement with no dimension e.g. expval if num == 1: jac = qml.math.reshape(qml.math.stack(jac), (1, -1)) try: res = dy_row @ jac except Exception: # pylint: disable=broad-except res = qml.math.tensordot(jac, dy_row, [[0], [0]]) # Single measurement with dimension e.g. probs else: jac = qml.math.reshape(qml.math.stack(jac), (-1, num)) try: res = jac @ dy_row except Exception: # pylint: disable=broad-except res = qml.math.tensordot(jac, dy_row, [[1], [0]]) return res
[docs]def compute_vjp_multi(dy, jac, num=None): """Convenience function to compute the vector-Jacobian product for a given vector of gradient outputs and a Jacobian for a tape with multiple measurements. Args: dy (tensor_like): vector of gradient outputs jac (tensor_like, tuple): Jacobian matrix num (int): The length of the flattened ``dy`` argument. This is an optional argument, but can be useful to provide if ``dy`` potentially has no shape (for example, due to tracing or just-in-time compilation). Returns: tensor_like: the vector-Jacobian product **Examples** 1. For a single parameter and multiple measurement (one without shape and one with shape, e.g. expval and probs): .. code-block:: pycon >>> jac = tuple([np.array(0.1), np.array([0.3, 0.4])]) >>> dy = tuple([np.array(1.0), np.array([1.0, 2.0])]) >>> compute_vjp_multi(dy, jac) array([1.2]) 2. For multiple parameters (in this case 2 parameters) and multiple measurement (one without shape and one with shape, e.g. expval and probs): .. code-block:: pycon >>> jac = ((np.array(0.1), np.array(0.2)), (np.array([0.3, 0.4]), np.array([0.5, 0.6]))) >>> dy = tuple([np.array(1.0), np.array([1.0, 2.0])]) >>> compute_vjp_multi(dy, jac) array([1.2, 1.9]) """ if jac is None: return None # Single parameter if not isinstance(jac[0], (tuple, autograd.builtins.SequenceBox)): res = [] for d, j_ in zip(dy, jac): res.append(compute_vjp_single(d, j_, num=num)) res = qml.math.sum(qml.math.stack(res), axis=0) # Multiple parameters else: try: dy_interface = qml.math.get_interface(dy[0]) # dy -> (i,j) observables, entries per observable # jac -> (i,k,j) observables, parameters, entries per observable # Contractions over observables and entries per observable dy_shape = qml.math.shape(dy) if len(dy_shape) > 1: # multiple values exist per observable output return qml.math.array(qml.math.einsum("ij,i...j", dy, jac), like=dy[0]) if dy_interface == "tensorflow": # TF needs a different path for Hessian support return qml.math.array( qml.math.einsum("i,i...", dy, jac, like=dy[0]), like=dy[0] ) # Scalar value per observable output return qml.math.array( qml.math.einsum("i,i...", dy, jac), like=dy[0] ) # Scalar value per observable output # NOTE: We want any potential failure to fall back here, so catch every exception type # TODO: Catalogue and update for expected exception types except Exception: # pylint: disable=broad-except res = [] for d, j_ in zip(dy, jac): sub_res = [] for j in j_: sub_res.append(qml.math.squeeze(compute_vjp_single(d, j, num=num))) res.append(sub_res) res = qml.math.stack([qml.math.stack(r) for r in res]) res = qml.math.sum(res, axis=0) return res
[docs]def vjp(tape, dy, gradient_fn, gradient_kwargs=None): r"""Generate the gradient tapes and processing function required to compute the vector-Jacobian products of a tape. Consider a function :math:`\mathbf{f}(\mathbf{x})`. The Jacobian is given by .. math:: \mathbf{J}_{\mathbf{f}}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} &\cdots &\frac{\partial f_1}{\partial x_n}\\ \vdots &\ddots &\vdots\\ \frac{\partial f_m}{\partial x_1} &\cdots &\frac{\partial f_m}{\partial x_n}\\ \end{pmatrix}. During backpropagation, the chain rule is applied. For example, consider the cost function :math:`h = y\circ f: \mathbb{R}^n \rightarrow \mathbb{R}`, where :math:`y: \mathbb{R}^m \rightarrow \mathbb{R}`. The gradient is: .. math:: \nabla h(\mathbf{x}) = \frac{\partial y}{\partial \mathbf{f}} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \frac{\partial y}{\partial \mathbf{f}} \mathbf{J}_{\mathbf{f}}(\mathbf{x}). Denote :math:`d\mathbf{y} = \frac{\partial y}{\partial \mathbf{f}}`; we can write this in the form of a matrix multiplication: .. math:: \left[\nabla h(\mathbf{x})\right]_{j} = \sum_{i=0}^m d\mathbf{y}_i ~ \mathbf{J}_{ij}. Thus, we can see that the gradient of the cost function is given by the so-called **vector-Jacobian product**; the product of the row-vector :math:`d\mathbf{y}`, representing the gradient of subsequent components of the cost function, and :math:`\mathbf{J}`, the Jacobian of the current node of interest. Args: tape (.QuantumTape): quantum tape to differentiate dy (tensor_like): Gradient-output vector. Must have shape matching the output shape of the corresponding tape. gradient_fn (callable): the gradient transform to use to differentiate the tape gradient_kwargs (dict): dictionary of keyword arguments to pass when determining the gradients of tapes Returns: tensor_like or None: Vector-Jacobian product. Returns None if the tape has no trainable parameters. **Example** Consider the following quantum tape with PyTorch parameters: .. code-block:: python import torch x = torch.tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], requires_grad=True, dtype=torch.float64) ops = [ qml.RX(x[0, 0], wires=0), qml.RY(x[0, 1], wires=1), qml.RZ(x[0, 2], wires=0), qml.CNOT(wires=[0, 1]), qml.RX(x[1, 0], wires=1), qml.RY(x[1, 1], wires=0), qml.RZ(x[1, 2], wires=1) ] measurements = [qml.expval(qml.Z(0)), qml.probs(wires=1)] tape = qml.tape.QuantumTape(ops, measurements) We can use the ``vjp`` function to compute the vector-Jacobian product, given a gradient-output vector ``dy``: >>> dy = torch.tensor([1., 1., 1.], dtype=torch.float64) >>> vjp_tapes, fn = qml.gradients.vjp(tape, dy, qml.gradients.param_shift) Note that ``dy`` has shape ``(3,)``, matching the output dimension of the tape (1 expectation and 2 probability values). Executing the VJP tapes, and applying the processing function: >>> dev = qml.device("default.qubit") >>> vjp = fn(qml.execute(vjp_tapes, dev, diff_method=qml.gradients.param_shift, interface="torch")) >>> vjp tensor([-1.1562e-01, -1.3862e-02, -9.0841e-03, -1.5214e-16, -4.8217e-01, 2.1329e-17], dtype=torch.float64, grad_fn=<SumBackward1>) The output VJP is also differentiable with respect to the tape parameters: >>> cost = torch.sum(vjp) >>> cost.backward() >>> x.grad tensor([[-1.1025e+00, -2.0554e-01, -1.4917e-01], [-1.2490e-16, -9.1580e-01, 0.0000e+00]], dtype=torch.float64) """ gradient_kwargs = gradient_kwargs or {} num_params = len(tape.trainable_params) if num_params == 0: # The tape has no trainable parameters; the VJP # is simply none. return [], lambda _, num=None: None try: if _all_close_to_zero(dy): # If the dy vector is zero, then the # corresponding element of the VJP will be zero, # and we can avoid a quantum computation. def func(_, num=None): # pylint: disable=unused-argument res = qml.math.convert_like(np.zeros([num_params]), dy) multi = len(tape.measurements) > 1 if multi: multi_dy = dy[0] res = qml.math.convert_like(res, multi_dy) return qml.math.cast_like(res, multi_dy) return qml.math.cast_like(res, dy) return [], func except (AttributeError, TypeError, NotImplementedError): pass gradient_tapes, fn = gradient_fn(tape, **gradient_kwargs) def processing_fn(results, num=None): # postprocess results to compute the Jacobian jac = fn(results) multi = len(tape.measurements) > 1 comp_vjp_fn = compute_vjp_multi if multi else compute_vjp_single if not tape.shots.has_partitioned_shots: return comp_vjp_fn(dy, jac, num=num) vjp_ = [comp_vjp_fn(dy_, jac_, num=num) for dy_, jac_ in zip(dy, jac)] return qml.math.sum(qml.math.stack(vjp_), 0) return gradient_tapes, processing_fn
# pylint: disable=too-many-arguments
[docs]def batch_vjp(tapes, dys, gradient_fn, reduction="append", gradient_kwargs=None): r"""Generate the gradient tapes and processing function required to compute the vector-Jacobian products of a batch of tapes. Consider a function :math:`\mathbf{f}(\mathbf{x})`. The Jacobian is given by .. math:: \mathbf{J}_{\mathbf{f}}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} &\cdots &\frac{\partial f_1}{\partial x_n}\\ \vdots &\ddots &\vdots\\ \frac{\partial f_m}{\partial x_1} &\cdots &\frac{\partial f_m}{\partial x_n}\\ \end{pmatrix}. During backpropagation, the chain rule is applied. For example, consider the cost function :math:`h = y\circ f: \mathbb{R}^n \rightarrow \mathbb{R}`, where :math:`y: \mathbb{R}^m \rightarrow \mathbb{R}`. The gradient is: .. math:: \nabla h(\mathbf{x}) = \frac{\partial y}{\partial \mathbf{f}} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \frac{\partial y}{\partial \mathbf{f}} \mathbf{J}_{\mathbf{f}}(\mathbf{x}). Denote :math:`d\mathbf{y} = \frac{\partial y}{\partial \mathbf{f}}`; we can write this in the form of a matrix multiplication: .. math:: \left[\nabla h(\mathbf{x})\right]_{j} = \sum_{i=0}^m d\mathbf{y}_i ~ \mathbf{J}_{ij}. Thus, we can see that the gradient of the cost function is given by the so-called **vector-Jacobian product**; the product of the row-vector :math:`d\mathbf{y}`, representing the gradient of subsequent components of the cost function, and :math:`\mathbf{J}`, the Jacobian of the current node of interest. Args: tapes (Sequence[.QuantumTape]): sequence of quantum tapes to differentiate dys (Sequence[tensor_like]): Sequence of gradient-output vectors ``dy``. Must be the same length as ``tapes``. Each ``dy`` tensor should have shape matching the output shape of the corresponding tape. gradient_fn (callable): the gradient transform to use to differentiate the tapes reduction (str): Determines how the vector-Jacobian products are returned. If ``append``, then the output of the function will be of the form ``List[tensor_like]``, with each element corresponding to the VJP of each input tape. If ``extend``, then the output VJPs will be concatenated. gradient_kwargs (dict): dictionary of keyword arguments to pass when determining the gradients of tapes Returns: List[tensor_like or None]: list of vector-Jacobian products. ``None`` elements corresponds to tapes with no trainable parameters. **Example** Consider the following Torch-compatible quantum tapes: .. code-block:: python import torch x = torch.tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], requires_grad=True, dtype=torch.float64) ops = [ qml.RX(x[0, 0], wires=0), qml.RY(x[0, 1], wires=1), qml.RZ(x[0, 2], wires=0), qml.CNOT(wires=[0, 1]), qml.RX(x[1, 0], wires=1), qml.RY(x[1, 1], wires=0), qml.RZ(x[1, 2], wires=1) ] measurements1 = [qml.expval(qml.Z(0)), qml.probs(wires=1)] tape1 = qml.tape.QuantumTape(ops, measurements1) measurements2 = [qml.expval(qml.Z(0) @ qml.Z(1))] tape2 = qml.tape.QuantumTape(ops, measurements2) tapes = [tape1, tape2] Both tapes share the same circuit ansatz, but have different measurement outputs. We can use the ``batch_vjp`` function to compute the vector-Jacobian product, given a list of gradient-output vectors ``dys`` per tape: >>> dys = [torch.tensor([1., 1., 1.], dtype=torch.float64), ... torch.tensor([1.], dtype=torch.float64)] >>> vjp_tapes, fn = qml.gradients.batch_vjp(tapes, dys, qml.gradients.param_shift) Note that each ``dy`` has shape matching the output dimension of the tape (``tape1`` has 1 expectation and 2 probability values --- 3 outputs --- and ``tape2`` has 1 expectation value). Executing the VJP tapes, and applying the processing function: >>> dev = qml.device("default.qubit") >>> vjps = fn(qml.execute(vjp_tapes, dev, diff_method=qml.gradients.param_shift, interface="torch")) >>> vjps [tensor([-1.1562e-01, -1.3862e-02, -9.0841e-03, -1.5214e-16, -4.8217e-01, 2.1329e-17], dtype=torch.float64, grad_fn=<SumBackward1>), tensor([ 1.7393e-01, -1.6412e-01, -5.3983e-03, -2.9366e-01, -4.0083e-01, 2.1134e-17], dtype=torch.float64, grad_fn=<SqueezeBackward3>)] We have two VJPs; one per tape. Each one corresponds to the number of parameters on the tapes (6). The output VJPs are also differentiable with respect to the tape parameters: >>> cost = torch.sum(vjps[0] + vjps[1]) >>> cost.backward() >>> x.grad tensor([[-0.4792, -0.9086, -0.2420], [-0.0930, -1.0772, 0.0000]], dtype=torch.float64) """ gradient_kwargs = gradient_kwargs or {} reshape_info = [] gradient_tapes = [] processing_fns = [] # Loop through the tapes and dys vector for tape, dy in zip(tapes, dys): g_tapes, fn = vjp(tape, dy, gradient_fn, gradient_kwargs=gradient_kwargs) reshape_info.append(len(g_tapes)) processing_fns.append(fn) gradient_tapes.extend(g_tapes) def processing_fn(results, nums=None): vjps = [] start = 0 if nums is None: nums = [None] * len(tapes) for t_idx in range(len(tapes)): # extract the correct results from the flat list res_len = reshape_info[t_idx] res_t = results[start : start + res_len] start += res_len # postprocess results to compute the VJP vjp_ = processing_fns[t_idx](res_t, num=nums[t_idx]) if vjp_ is None: if reduction == "append": vjps.append(None) continue if isinstance(reduction, str): getattr(vjps, reduction)(vjp_) elif callable(reduction): reduction(vjps, vjp_) return vjps return gradient_tapes, processing_fn