# Copyright 2024 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Cartan involutions"""fromfunctoolsimportsingledispatch# pylint: disable=missing-function-docstringfromtypingimportOptional,UnionimportnumpyasnpimportpennylaneasqmlfrompennylaneimportY,Z,matrixfrompennylane.operationimportOperatorfrompennylane.pauliimportPauliSentence
[docs]defkhaneja_glaser_involution(op:Union[np.ndarray,PauliSentence,Operator],wire:int=None):r"""Khaneja-Glaser involution, which is a type-:func:`~AIII` Cartan involution with p=q. Args: op (Union[np.ndarray, PauliSentence, Operator]): Input operator wire (int): Qubit wire on which to perform Khaneja-Glaser decomposition Returns: bool: Whether ``op`` should go to the even or odd subspace of the decomposition .. seealso:: :func:`~cartan_decomp` See `Khaneja and Glaser (2000) <https://arxiv.org/abs/quant-ph/0010100>`__ for reference. **Example** Let us first perform a single Khaneja-Glaser decomposition of :math:`\mathfrak{g} = \mathfrak{su}(8)`, i.e. the Lie algebra of all Pauli words on 3 qubits. >>> g = list(qml.pauli.pauli_group(3)) # u(8) >>> g = g[1:] # remove identity >>> g = [op.pauli_rep for op in g] We perform the first iteration on the first qubit. We use :func:`~cartan_decomp`. >>> from functools import partial >>> from pennylane.labs.dla import cartan_decomp, khaneja_glaser_involution >>> k0, m0 = cartan_decomp(g, partial(khaneja_glaser_involution, wire=0)) >>> print(f"First iteration, AIII: {len(k0)}, {len(m0)}") First iteration, AIII: 31, 32 >>> assert qml.labs.dla.check_cartan_decomp(k0, m0) # check Cartan commutation relations We see that we split the 63-dimensional algebra :math:`\mathfrak{su}(8)` into a 31-dimensional and a 32-dimensional subspace, and :func:`~check_cartan_decomp` verified that they satisfy the commutation relations of a Cartan decomposition. To expand on this example, we continue process recursively on the :math:`\mathfrak{k}_0` subalgebra. Before we can apply the Khaneja-Glaser (type AIII) decomposition a second time, we need to a) remove the :math:`\mathfrak{u}(1)` center from :math:`\mathfrak{k}_0=\mathfrak{su}(4)\oplus\mathfrak{su}(4)\oplus\mathfrak{u}(1)` to make it semisimple and b) perform a different Cartan decomposition, which is sometimes termed class B. >>> center_k0 = qml.center(k0, pauli=True) # Compute center of k0 >>> k0_semi = [op for op in k0 if op not in center_k0] # Remove center from k0 >>> print(f"Removed operators {center_k0}, new length: {len(k0_semi)}") Removed operators [1.0 * Z(0)], new length: 30 >>> from pennylane.labs.dla import ClassB >>> k1, m1 = cartan_decomp(k0_semi, partial(ClassB, wire=0)) >>> assert qml.labs.dla.check_cartan_decomp(k1, m1) >>> print(f"First iteration, class B: {len(k1)}, {len(m1)}") First iteration, class B: 15, 15 Now we arrived at the subalgebra :math:`\mathfrak{k}_1=\mathfrak{su}(4)` and can perform the next iteration of the recursive decomposition. >>> k2, m2 = cartan_decomp(k1, partial(khaneja_glaser_involution, wire=1)) >>> assert qml.labs.dla.check_cartan_decomp(k2, m2) >>> print(f"Second iteration, AIII: {len(k2)}, {len(m2)}") Second iteration, AIII: 7, 8 We can follow up on this by removing the center from :math:`\mathfrak{k}_1` again, and applying a final class B decomposition: >>> center_k2 = qml.center(k2, pauli=True) >>> k2_semi = [op for op in k2 if op not in center_k2] >>> print(f"Removed operators {center_k2}, new length: {len(k2_semi)}") Removed operators [1.0 * Z(1)], new length: 6 >>> k3, m3 = cartan_decomp(k2_semi, partial(ClassB, wire=1)) >>> assert qml.labs.dla.check_cartan_decomp(k3, m3) >>> print(f"Second iteration, class B: {len(k3)}, {len(m3)}") Second iteration, class B: 3, 3 This concludes our example of the Khaneja-Glaser recursive decomposition, as we arrived at easy to implement single-qubit operations. """ifwireisNone:raiseValueError("Please specify the wire for the Khaneja-Glaser involution via ""functools.partial(khaneja_glaser_involution, wire=wire)")ifisinstance(op,np.ndarray):p=q=op.shape[0]//2elifisinstance(op,(PauliSentence,Operator)):p=q=2**(len(op.wires)-1)else:raiseValueError(f"Can't infer p and q from operator of type {type(op)}.")returnAIII(op,p,q,wire)
# Canonical involutions# see https://arxiv.org/abs/2406.04418 appendix C# matricesdefint_log2(x):"""Compute the integer closest to log_2(x)."""returnint(np.round(np.log2(x)))defis_qubit_case(p,q):"""Return whether p and q are the same and a power of 2."""returnp==qand2**int_log2(p)==pdefJ(n,wire=None):"""This is the standard choice for the symplectic transformation operator. For an :math:`N`-qubit system (:math:`n=2^N`), it equals :math:`Y_0`."""N=int_log2(n)if2**N==n:ifwireisNone:wire=0returnY(wire).matrix(wire_order=range(N+1))ifwireisnotNone:raiseValueError("The wire argument is only supported for n=2**N for some integer N.")zeros=np.zeros((n,n))eye=np.eye(n)returnnp.block([[zeros,-1j*eye],[1j*eye,zeros]])defIpq(p,q,wire=None):"""This is the canonical transformation operator for AIII and BDI Cartan decompositions. For an :math:`N`-qubit system (:math:`n=2^N`) and :math:`p=q=n/2`, it equals :math:`Z_0`."""# If p = q and they are a power of two, use Pauli representationifis_qubit_case(p,q):ifwireisNone:wire=0returnZ(wire).matrix(wire_order=range(int_log2(p)+1))ifwireisnotNone:raiseValueError("The wire argument is only supported for p=q=2**N for some integer N.")returnnp.block([[np.eye(p),np.zeros((p,q))],[np.zeros((q,p)),-np.eye(q)]])defKpq(p,q,wire=None):"""This is the canonical transformation operator for CII Cartan decompositions. For an :math:`N`-qubit system (:math:`n=2^N`) and :math:`p=q=n/2`, it equals :math:`Z_1`."""# If p = q and they are a power of two, use Pauli representationifis_qubit_case(p,q):ifwireisNone:wire=1returnZ(wire).matrix(wire_order=range(int_log2(p)+1))ifwireisnotNone:raiseValueError("The wire argument is only supported for p=q=2**N for some integer N.")zeros=np.zeros((p+q,p+q))d=np.diag(np.concatenate([np.ones(p),-np.ones(q)]))KKm=np.block([[d,zeros],[zeros,d]])returnKKm
[docs]defAI(op:Union[np.ndarray,PauliSentence,Operator])->bool:r"""Canonical Cartan decomposition of type AI, given by :math:`\theta: x \mapsto x^\ast`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """return_AI(op)
@singledispatchdef_AI(op):# pylint:disable=unused-argumentr"""Default implementation of the canonical form of the AI involution :math:`\theta: x \mapsto x^\ast`. """raiseNotImplementedError(f"Involution not implemented for operator {op} of type {type(op)}")@_AI.register(np.ndarray)def_AI_matrix(op:np.ndarray)->bool:r"""Matrix implementation of the canonical form of the AI involution :math:`\theta: x \mapsto x^\ast`. """op=op*1jreturnnp.allclose(op,op.conj())@_AI.register(PauliSentence)def_AI_ps(op:PauliSentence)->bool:r"""PauliSentence implementation of the canonical form of the AI involution :math:`\theta: x \mapsto x^\ast`. """parity=[]forpwinop:result=sum(el=="Y"forelinpw.values())parity.append(bool(result%2))# only makes sense if parity is the same for all termsassertall(parity)ornotany(parity)returnparity[0]@_AI.register(Operator)def_AI_op(op:Operator)->bool:r"""Operator implementation of the canonical form of the AI involution :math:`\theta: x \mapsto x^\ast`. """return_AI_ps(op.pauli_rep)
[docs]defAII(op:Union[np.ndarray,PauliSentence,Operator],wire:Optional[int]=None)->bool:r"""Canonical Cartan decomposition of type AII, given by :math:`\theta: x \mapsto Y_0 x^\ast Y_0`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. wire (int): The wire on which the Pauli-:math:`Y` operator acts to implement the involution. Will default to ``0`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """return_AII(op,wire)
@singledispatchdef_AII(op,wire=None):# pylint:disable=unused-argumentr"""Default implementation of the canonical form of the AII involution :math:`\theta: x \mapsto Y_0 x^\ast Y_0`. """raiseNotImplementedError(f"Involution not implemented for operator {op} of type {type(op)}")@_AII.register(np.ndarray)def_AII_matrix(op:np.ndarray,wire:Optional[int]=None)->bool:r"""Matrix implementation of the canonical form of the AII involution :math:`\theta: x \mapsto Y_0 x^\ast Y_0`. """op=op*1jy=J(op.shape[-1]//2,wire=wire)returnnp.allclose(op,y@op.conj()@y)@_AII.register(PauliSentence)def_AII_ps(op:PauliSentence,wire:Optional[int]=None)->bool:r"""PauliSentence implementation of the canonical form of the AII involution :math:`\theta: x \mapsto Y_0 x^\ast Y_0`. """ifwireisNone:wire=0parity=[]forpwinop:result=sum(el=="Y"forelinpw.values())+(pw.get(wire,"I")in"XZ")parity.append(bool(result%2))# only makes sense if parity is the same for all termsassertall(parity)ornotany(parity)returnparity[0]@_AII.register(Operator)def_AII_op(op:Operator,wire:Optional[int]=None)->bool:r"""Operator implementation of the canonical form of the AII involution :math:`\theta: x \mapsto Y_0 x^\ast Y_0`. """return_AII_ps(op.pauli_rep,wire)
[docs]defAIII(op:Union[np.ndarray,PauliSentence,Operator],p:int=None,q:int=None,wire:Optional[int]=None,)->bool:r"""Canonical Cartan decomposition of type AIII, given by :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. The matrix :math:`I_{p,q}` is given by .. math:: I_{p,q}=\text{diag}(\underset{p \text{times}}{\underbrace{1, \dots 1}}, \underset{q \text{times}}{\underbrace{-1, \dots -1}}). For :math:`p=q=2^N` for some integer :math:`N`, we have :math:`I_{p,q}=Z_0`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. p (int): Dimension of first subspace. q (int): Dimension of second subspace. wire (int): The wire on which the Pauli-:math:`Z` operator acts to implement the involution. Will default to ``0`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """ifpisNoneorqisNone:raiseValueError("please specify p and q for the involution via functools.partial(AIII, p=p, q=q)")return_AIII(op,p,q,wire)
@singledispatchdef_AIII(op,p=None,q=None,wire=None):# pylint:disable=unused-argumentr"""Default implementation of the canonical form of the AIII involution :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. """raiseNotImplementedError(f"Involution not implemented for operator {op} of type {type(op)}")@_AIII.register(np.ndarray)def_AIII_matrix(op:np.ndarray,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""Matrix implementation of the canonical form of the AIII involution :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. """op=op*1jz=Ipq(p,q,wire=wire)returnnp.allclose(op,z@op@z)@_AIII.register(PauliSentence)def_AIII_ps(op:PauliSentence,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""PauliSentence implementation of the canonical form of the AIII involution :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. """ifis_qubit_case(p,q):ifwireisNone:wire=0parity=[pw.get(wire,"I")in"IZ"forpwinop]# only makes sense if parity is the same for all termsassertall(parity)ornotany(parity)returnparity[0]# If it is not a qubit case, use the matrix representationreturn_AIII_matrix(matrix(op,wire_order=sorted(op.wires)),p,q,wire)@_AIII.register(Operator)def_AIII_op(op:Operator,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""Operator implementation of the canonical form of the AIII involution :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. """return_AIII_ps(op.pauli_rep,p,q,wire)
[docs]defBDI(op:Union[np.ndarray,PauliSentence,Operator],p:int=None,q:int=None,wire:Optional[int]=None,)->bool:r"""Canonical Cartan decomposition of type BDI, given by :math:`\theta: x \mapsto I_{p,q} x I_{p,q}`. The matrix :math:`I_{p,q}` is given by .. math:: I_{p,q}=\text{diag}(\underset{p \text{times}}{\underbrace{1, \dots 1}}, \underset{q \text{times}}{\underbrace{-1, \dots -1}}). For :math:`p=q=2^N` for some integer :math:`N`, we have :math:`I_{p,q}=Z_0`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. p (int): Dimension of first subspace. q (int): Dimension of second subspace. wire (int): The wire on which the Pauli-:math:`Z` operator acts to implement the involution. Will default to ``0`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """returnAIII(op,p,q,wire)
[docs]defCI(op:Union[np.ndarray,PauliSentence,Operator])->bool:r"""Canonical Cartan decomposition of type CI, given by :math:`\theta: x \mapsto x^\ast`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """returnAI(op)
[docs]defCII(op:Union[np.ndarray,PauliSentence,Operator],p:int=None,q:int=None,wire:Optional[int]=None,)->bool:r"""Canonical Cartan decomposition of type CII, given by :math:`\theta: x \mapsto K_{p,q} x K_{p,q}`. The matrix :math:`K_{p,q}` is given by .. math:: K_{p,q}=\text{diag}( \underset{p \text{times}}{\underbrace{1, \dots 1}}, \underset{q \text{times}}{\underbrace{-1, \dots -1}}, \underset{p \text{times}}{\underbrace{1, \dots 1}}, \underset{q \text{times}}{\underbrace{-1, \dots -1}}, ). For :math:`p=q=2^N` for some integer :math:`N`, we have :math:`K_{p,q}=Z_1`. .. note:: Note that we work with Hermitian operators internally, so that the input will be multiplied by :math:`i` before evaluating the involution. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. p (int): Dimension of first subspace. q (int): Dimension of second subspace. wire (int): The wire on which the Pauli-:math:`Z` operator acts to implement the involution. Will default to ``1`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """ifpisNoneorqisNone:raiseValueError("please specify p and q for the involution via functools.partial(CII, p=p, q=q)")return_CII(op,p,q,wire)
@singledispatchdef_CII(op,p=None,q=None,wire=None):# pylint:disable=unused-argumentr"""Default implementation of the canonical form of the CII involution :math:`\theta: x \mapsto K_{p,q} x K_{p,q}`. """raiseNotImplementedError(f"Involution not implemented for operator {op} of type {type(op)}")@_CII.register(np.ndarray)def_CII_matrix(op:np.ndarray,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""Matrix implementation of the canonical form of the CII involution :math:`\theta: x \mapsto K_{p,q} x K_{p,q}`. """op=op*1jz=Kpq(p,q,wire=wire)returnnp.allclose(op,z@op@z)@_CII.register(PauliSentence)def_CII_ps(op:PauliSentence,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""PauliSentence implementation of the canonical form of the CII involution :math:`\theta: x \mapsto K_{p,q} x K_{p,q}`. """ifis_qubit_case(p,q):ifwireisNone:wire=1parity=[pw.get(wire,"I")in"IZ"forpwinop]# only makes sense if parity is the same for all termsassertall(parity)ornotany(parity)returnparity[0]# If it is not a qubit case, use the matrix representationreturn_CII(matrix(op,wire_order=sorted(op.wires)),p,q,wire)@_CII.register(Operator)def_CII_op(op:Operator,p:int=None,q:int=None,wire:Optional[int]=None)->bool:r"""Operator implementation of the canonical form of the CII involution :math:`\theta: x \mapsto K_{p,q} x K_{p,q}`. """return_CII_ps(op.pauli_rep,p,q,wire)
[docs]defDIII(op:Union[np.ndarray,PauliSentence,Operator],wire:Optional[int]=None)->bool:r"""Canonical Cartan decomposition of type DIII, given by :math:`\theta: x \mapsto Y_0 x Y_0`. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. wire (int): The wire on which the Pauli-:math:`Y` operator acts to implement the involution. Will default to ``0`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """return_DIII(op,wire)
@singledispatchdef_DIII(op,wire=None):# pylint:disable=unused-argumentr"""Default implementation of the canonical form of the DIII involution :math:`\theta: x \mapsto Y_0 x Y_0`. """raiseNotImplementedError(f"Involution not implemented for operator {op} of type {type(op)}")@_DIII.register(np.ndarray)def_DIII_matrix(op:np.ndarray,wire:Optional[int]=None)->bool:r"""Matrix implementation of the canonical form of the DIII involution :math:`\theta: x \mapsto Y_0 x Y_0`. """y=J(op.shape[-1]//2,wire=wire)returnnp.allclose(op,y@op@y)@_DIII.register(PauliSentence)def_DIII_ps(op:PauliSentence,wire:Optional[int]=None)->bool:r"""PauliSentence implementation of the canonical form of the DIII involution :math:`\theta: x \mapsto Y_0 x Y_0`. """ifwireisNone:wire=0parity=[pw.get(wire,"I")in"IY"forpwinop]# only makes sense if parity is the same for all termsassertall(parity)ornotany(parity)returnparity[0]@_DIII.register(Operator)def_DIII_op(op:Operator,wire:Optional[int]=None)->bool:r"""Operator implementation of the canonical form of the DIII involution :math:`\theta: x \mapsto Y_0 x Y_0`. """return_DIII_ps(op.pauli_rep,wire)
[docs]defClassB(op:Union[np.ndarray,PauliSentence,Operator],wire:Optional[int]=None)->bool:r"""Canonical Cartan decomposition of class B, given by :math:`\theta: x \mapsto Y_0 x Y_0`. Args: op (Union[np.ndarray, PauliSentence, Operator]): Operator on which the involution is evaluated and for which the parity under the involution is returned. wire (int): The wire on which the Pauli-:math:`Y` operator acts to implement the involution. Will default to ``0`` if ``None``. Returns: bool: Whether or not the input operator (times :math:`i`) is in the eigenspace of the involution :math:`\theta` with eigenvalue :math:`+1`. """returnDIII(op,wire)
# dispatch to different input types
[docs]defeven_odd_involution(op:Union[PauliSentence,np.ndarray,Operator])->bool:r"""The Even-Odd involution. This is defined in `quant-ph/0701193 <https://arxiv.org/abs/quant-ph/0701193>`__. For Pauli words and sentences, it comes down to counting non-trivial Paulis in Pauli words. Args: op ( Union[PauliSentence, np.ndarray, Operator]): Input operator Returns: bool: Boolean output ``True`` or ``False`` for odd (:math:`\mathfrak{k}`) and even parity subspace (:math:`\mathfrak{m}`), respectively .. seealso:: :func:`~cartan_decomp` **Example** >>> from pennylane import X, Y, Z >>> from pennylane.labs.dla import even_odd_involution >>> ops = [X(0), X(0) @ Y(1), X(0) @ Y(1) @ Z(2)] >>> [even_odd_involution(op) for op in ops] [True, False, True] Operators with an odd number of non-identity Paulis yield ``1``, whereas even ones yield ``0``. The function also works with dense matrix representations. >>> ops_m = [qml.matrix(op, wire_order=range(3)) for op in ops] >>> [even_odd_involution(op_m) for op_m in ops_m] [True, False, True] """return_even_odd_involution(op)
@singledispatchdef_even_odd_involution(op):# pylint:disable=unused-argument, missing-function-docstringreturnNotImplementedError(f"Involution not defined for operator {op} of type {type(op)}")@_even_odd_involution.register(PauliSentence)def_even_odd_involution_ps(op:PauliSentence):# Generalization to sums of Paulis: check each term and assert they all have the same parityparity=[]forpwinop.keys():parity.append(len(pw)%2)# only makes sense if parity is the same for all terms, e.g. Heisenberg modelassertall(parity[0]==pforpinparity),f"The Even-Odd involution is not well-defined for operator {op} as individual terms have different parity"returnbool(parity[0])@_even_odd_involution.register(np.ndarray)def_even_odd_involution_matrix(op:np.ndarray):"""see Table CI in https://arxiv.org/abs/2406.04418"""n=int(np.round(np.log2(op.shape[-1])))YYY=qml.prod(*[Y(i)foriinrange(n)])YYY=qml.matrix(YYY,range(n))transformed=YYY@op.conj()@YYYifnp.allclose(transformed,op):returnFalseifnp.allclose(transformed,-op):returnTrueraiseValueError(f"The Even-Odd involution is not well-defined for operator {op}.")@_even_odd_involution.register(Operator)def_even_odd_involution_op(op:Operator):"""use pauli representation"""return_even_odd_involution_ps(op.pauli_rep)# dispatch to different input types
[docs]defconcurrence_involution(op:Union[PauliSentence,np.ndarray,Operator])->bool:r"""The Concurrence Canonical Decomposition :math:`\Theta(g) = -g^T` as a Cartan involution function. This is defined in `quant-ph/0701193 <https://arxiv.org/abs/quant-ph/0701193>`__. For Pauli words and sentences, it comes down to counting Pauli-Y operators. Args: op ( Union[PauliSentence, np.ndarray, Operator]): Input operator Returns: bool: Boolean output ``True`` or ``False`` for odd (:math:`\mathfrak{k}`) and even parity subspace (:math:`\mathfrak{m}`), respectively .. seealso:: :func:`~cartan_decomp` **Example** >>> from pennylane import X, Y, Z >>> from pennylane.labs.dla import concurrence_involution >>> ops = [X(0), X(0) @ Y(1), X(0) @ Y(1) @ Z(2), Y(0) @ Y(2)] >>> [concurrence_involution(op) for op in ops] [False, True, True, False] Operators with an odd number of ``Y`` operators yield ``1``, whereas even ones yield ``0``. The function also works with dense matrix representations. >>> ops_m = [qml.matrix(op, wire_order=range(3)) for op in ops] >>> [even_odd_involution(op_m) for op_m in ops_m] [False, True, True, False] """return_concurrence_involution(op)
@singledispatchdef_concurrence_involution(op):returnNotImplementedError(f"Involution not defined for operator {op} of type {type(op)}")@_concurrence_involution.register(PauliSentence)def_concurrence_involution_pauli(op:PauliSentence):# Generalization to sums of Paulis: check each term and assert they all have the same parityparity=[]forpwinop.keys():result=sum(1ifel=="Y"else0forelinpw.values())parity.append(result%2)# only makes sense if parity is the same for all terms, e.g. Heisenberg modelassertall(parity[0]==pforpinparity),f"The concurrence canonical decomposition is not well-defined for operator {op} as individual terms have different parity"returnbool(parity[0])@_concurrence_involution.register(Operator)def_concurrence_involution_operator(op:Operator):return_concurrence_involution_matrix(op.matrix())@_concurrence_involution.register(np.ndarray)def_concurrence_involution_matrix(op:np.ndarray):ifnp.allclose(op,-op.T):returnTrueifnp.allclose(op,op.T):returnFalseraiseValueError(f"The concurrence canonical decomposition is not well-defined for operator {op}")