Source code for pennylane.labs.resource_estimation.ops.qubit.parametric_ops_single_qubit

# Copyright 2024 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Resource operators for parametric single qubit operations."""
from typing import Dict

import numpy as np

import pennylane as qml
import pennylane.labs.resource_estimation as re

# pylint: disable=arguments-differ


def _rotation_resources(epsilon=10e-3):
    """An estimate on the number of T gates needed to implement a Pauli rotation. The estimate is taken from https://arxiv.org/abs/1404.5320."""
    gate_types = {}

    num_gates = round(1.149 * np.log2(1 / epsilon) + 9.2)
    t = re.ResourceT.resource_rep()
    gate_types[t] = num_gates

    return gate_types


[docs]class ResourcePhaseShift(qml.PhaseShift, re.ResourceOperator): r""" Resource class for the PhaseShift gate. The resources are defined from the following identity: .. math:: R_\phi(\phi) = e^{i\phi/2}R_z(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}. """ @staticmethod def _resource_decomp() -> Dict[re.CompressedResourceOp, int]: gate_types = {} rz = re.ResourceRZ.resource_rep() global_phase = re.ResourceGlobalPhase.resource_rep() gate_types[rz] = 1 gate_types[global_phase] = 1 return gate_types
[docs] def resource_params(self) -> dict: return {}
[docs] @classmethod def resource_rep(cls) -> re.CompressedResourceOp: return re.CompressedResourceOp(cls, {})
[docs]class ResourceRX(qml.RX, re.ResourceOperator): """Resource class for the RX gate.""" @staticmethod def _resource_decomp(config) -> Dict[re.CompressedResourceOp, int]: return _rotation_resources(epsilon=config["error_rx"])
[docs] def resource_params(self) -> dict: return {}
[docs] @classmethod def resource_rep(cls) -> re.CompressedResourceOp: return re.CompressedResourceOp(cls, {})
[docs]class ResourceRY(qml.RY, re.ResourceOperator): """Resource class for the RY gate.""" @staticmethod def _resource_decomp(config) -> Dict[re.CompressedResourceOp, int]: return _rotation_resources(epsilon=config["error_ry"])
[docs] def resource_params(self) -> dict: return {}
[docs] @classmethod def resource_rep(cls) -> re.CompressedResourceOp: return re.CompressedResourceOp(cls, {})
[docs]class ResourceRZ(qml.RZ, re.ResourceOperator): r"""Resource class for the RZ gate. Resources: The resources are estimated by approximating the gate with a series of T gates. The estimate is taken from https://arxiv.org/abs/1404.5320. """ @staticmethod def _resource_decomp(config) -> Dict[re.CompressedResourceOp, int]: return _rotation_resources(epsilon=config["error_rz"])
[docs] def resource_params(self) -> dict: return {}
[docs] @classmethod def resource_rep(cls) -> re.CompressedResourceOp: return re.CompressedResourceOp(cls, {})
[docs]class ResourceRot(qml.Rot, re.ResourceOperator): """Resource class for the Rot gate.""" @staticmethod def _resource_decomp() -> Dict[re.CompressedResourceOp, int]: rx = ResourceRX.resource_rep() ry = ResourceRY.resource_rep() rz = ResourceRZ.resource_rep() gate_types = {rx: 1, ry: 1, rz: 1} return gate_types
[docs] def resource_params(self): return {}
[docs] @classmethod def resource_rep(cls) -> re.CompressedResourceOp: return re.CompressedResourceOp(cls, {})