Source code for pennylane.labs.zxopt.basic_optimization

# Copyright 2025 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization pass ``basic_optimization`` from pyzx using ZX calculus."""

import pennylane as qml
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn

from .util import _tape2pyzx

try:
    import pyzx as zx

    has_zx = True
except ImportError:
    has_zx = False


def null_postprocessing(results):
    """A postprocesing function returned by a transform that only converts the batch of results
    into a result for a single ``QuantumTape``.
    """
    return results[0]


[docs] @transform def basic_optimization(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]: r""" Apply `zx.basic_optimization <https://pyzx.readthedocs.io/en/latest/api.html#pyzx.optimize.basic_optimization>`__ to a PennyLane `phase polynomial <https://pennylane.ai/compilation/phase-polynomial-intermediate-representation>`__ circuit with :class:`~Hadamard` gates. This step can help improve phase polynomial based optimization schemes like :func:`~todd` or :func:`~full_optimize` by moving :class:`~Hadamard` gates in order to create big and few phase polynomial blocks. Args: tape (QNode or QuantumTape or Callable): Input PennyLane circuit. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: Improved PennyLane circuit. See :func:`qml.transform <pennylane.transform>` for the different output formats depending on the input type. .. seealso:: :func:`~full_reduce` (arbitrary circuits), :func:`~full_optimize` (`(Clifford + T) <https://pennylane.ai/compilation/clifford-t-gate-set>`__ circuits) **Example** This pass tries to push :class:`~Hadamard` gates as far as possible to the side to allow better phase polynomial optimization via, e.g., :func:`~todd`. .. code-block:: python from pennylane.labs.zxopt import basic_optimization circ = qml.tape.QuantumScript([ qml.CNOT((0, 1)), qml.T(0), qml.CNOT((3, 2)), qml.Hadamard(0), qml.T(1), qml.Hadamard(1), qml.CNOT((1, 2)), qml.Hadamard(2), qml.T(2), qml.Hadamard(2), qml.RZ(0.5, 1), qml.CNOT((1, 2)), qml.T(1), qml.CNOT((3, 2)), qml.Hadamard(1), qml.T(0), qml.CNOT((0, 1)), ], []) print(f"Circuit before:") print(qml.drawer.tape_text(circ, wire_order=range(4))) (new_circ,), _ = basic_optimization(circ) print(f"Circuit after basic_optimization:") print(qml.drawer.tape_text(new_circ, wire_order=range(4))) .. code-block:: Circuit before: 0: ─╭●──T──H──T────────────────────╭●─┤ 1: ─╰X──T──H─╭●──RZ───────╭●──T──H─╰X─┤ 2: ─╭X───────╰X──H───T──H─╰X─╭X───────┤ 3: ─╰●───────────────────────╰●───────┤ Circuit after basic_optimization: 0: ──T─╭●───────────╭X──H──T─┤ 1: ────╰X──T──H──RZ─╰●──H────┤ 2: ─╭●───────╭Z──────────────┤ 3: ─╰X──H──T─╰●──H───────────┤ """ if not has_zx: # pragma: no cover raise ImportError( "basic_optimization requires the package pyzx. " "You can install it with pip install pyzx" ) # pragma: no cover pyzx_circ = _tape2pyzx(tape) pyzx_circ = pyzx_circ.to_basic_gates() pyzx_circ = zx.basic_optimization(pyzx_circ) pl_circ = qml.transforms.from_zx(pyzx_circ.to_graph()) return [pl_circ], null_postprocessing