Source code for pennylane.labs.zxopt.full_optimize
# Copyright 2025 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization pass ``full_optimize`` from pyzx using ZX calculus."""
import warnings
import pennylane as qml
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn
from .util import _tape2pyzx
try:
import pyzx as zx
has_zx = True
except ImportError:
has_zx = False
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
[docs]
@transform
def full_optimize(
tape: QuantumScript, clifford_t_args: dict = None
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
r"""
Full optimization pipeline applying `TODD <https://arxiv.org/abs/1712.01557>`__ and ZX-based T gate reduction to a PennyLane `(Clifford + T) <https://pennylane.ai/compilation/clifford-t-gate-set>`__ circuit.
This function applies `zx.full_optimize <https://pyzx.readthedocs.io/en/latest/api.html#pyzx.optimize.full_optimize>`__ and is basically a combination of :func:`~todd` and :func:`~full_reduce`.
When there are continuous rotation gates such as :class:`~RZ`, we suggest to use :func:`~full_reduce`. Otherwise, :func:`~clifford_t_decomposition` is used to decompose the circuit to the (Clifford + T) gate set.
Args:
tape (QNode or QuantumTape or Callable): Input PennyLane circuit. This circuit has to be in the `(Clifford + T) <https://pennylane.ai/compilation/clifford-t-gate-set>`__ gate set.
clifford_t_args (dict): Optional arguments to be passed to :func:`~clifford_t_decomposition` when a circuit with continuous gates is passed.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: T gate optimized PennyLane circuit. See :func:`qml.transform <pennylane.transform>` for the different output formats depending on the input type.
.. seealso:: :func:`~full_reduce`, :func:`~todd`
**Example**
Let us optimize a circuit with :class:`~T` gates.
.. code-block:: python
from pennylane.labs.zxopt import full_optimize
circ = qml.tape.QuantumScript([
qml.CNOT((0, 1)),
qml.T(0),
qml.CNOT((3, 2)),
qml.T(1),
qml.CNOT((1, 2)),
qml.T(2),
qml.CNOT((1, 2)),
qml.T(1),
qml.CNOT((3, 2)),
qml.T(0),
qml.CNOT((0, 1)),
], [])
print(f"Circuit before:")
print(qml.drawer.tape_text(circ, wire_order=range(4)))
(new_circ,), _ = full_optimize(circ)
print(f"Circuit after full_optimize:")
print(qml.drawer.tape_text(new_circ, wire_order=range(4)))
.. code-block::
Circuit before:
0: ─╭●──T──T──────────╭●─┤
1: ─╰X──T─╭●────╭●──T─╰X─┤
2: ─╭X────╰X──T─╰X─╭X────┤
3: ─╰●─────────────╰●────┤
Circuit after full_optimize:
0: ──S─╭X──S†─╭X─╭X──Z──T─╭X─╭X─╭X─┤
1: ────╰●─────│──│────────╰●─│──│──┤
2: ──Z────────╰●─│───────────╰●─│──┤
3: ──Z───────────╰●─────────────╰●─┤
The original five T gates are reduced to just one.
.. details::
:title: Usage Details
There is the option to pass circuits that are not in the `(Clifford + T) <https://pennylane.ai/compilation/clifford-t-gate-set>`__ gate set. Those circuits will be first decomposed using :func:`~clifford_t_decomposition`.
We can pass optional keyword arguments to it via the ``clifford_t_args`` argument in the following way.
.. code-block:: python
circ = qml.tape.QuantumScript(
[
qml.CNOT((0, 1)),
qml.T(0),
qml.RZ(0.5, 0),
qml.Hadamard(0),
],
[],
)
new_circ = full_optimize(circ, clifford_t_args = {"epsilon": 0.1})
"""
if not has_zx: # pragma: no cover
raise ImportError(
"full_optimize requires the package pyzx. " "You can install it with pip install pyzx"
) # pragma: no cover
try:
pyzx_circ = _tape2pyzx(tape)
pyzx_circ = zx.full_optimize(pyzx_circ)
except TypeError:
if clifford_t_args is None:
warnings.warn(
"Input circuit is not in the (Clifford + T) basis, will attempt to decompose using qml.clifford_t_decomposition."
)
clifford_t_args = {}
(tape,), _ = qml.clifford_t_decomposition(tape, **clifford_t_args)
pyzx_circ = _tape2pyzx(tape)
pyzx_circ = zx.full_optimize(pyzx_circ)
pl_circ = qml.transforms.from_zx(pyzx_circ.to_graph())
return [pl_circ], null_postprocessing
_modules/pennylane/labs/zxopt/full_optimize
Download Python script
Download Notebook
View on GitHub