# Copyright 2018-2022 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""This module contains the qml.eigvals function."""importwarnings# pylint: disable=protected-accessfromfunctoolsimportpartial,reduceimportscipyimportpennylaneasqmlfrompennylaneimporttransformfrompennylane.tapeimportQuantumScript,QuantumScriptBatchfrompennylane.transformsimportTransformErrorfrompennylane.typingimportPostprocessingFn,TensorLike
[docs]defeigvals(op:qml.operation.Operator,k=1,which="SA")->TensorLike:r"""The eigenvalues of one or more operations. .. note:: - For a :class:`~.SparseHamiltonian` object, the eigenvalues are computed with the efficient ``scipy.sparse.linalg.eigsh`` method which returns :math:`k` eigenvalues. The default value of :math:`k` is :math:`1`. For an :math:`N \times N` sparse matrix, :math:`k` must be smaller than :math:`N - 1`, otherwise ``scipy.sparse.linalg.eigsh`` fails. If the requested :math:`k` is equal or larger than :math:`N - 1`, the regular ``qml.math.linalg.eigvalsh`` is applied on the dense matrix. For more details see the ``scipy.sparse.linalg.eigsh`` `documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh>`_. - A second-quantized :mod:`molecular Hamiltonian <pennylane.qchem.molecular_hamiltonian>` is independent of the number of electrons and its eigenspectrum contains the energies of the neutral and charged molecules. Therefore, the `smallest` eigenvalue returned by ``qml.eigvals`` for a molecular Hamiltonian might not always correspond to the neutral molecule. Args: op (Operator or QNode or QuantumTape or Callable): A quantum operator or quantum circuit. k (int): The number of eigenvalues to be returned for a :class:`~.SparseHamiltonian`. which (str): Method for computing the eigenvalues of a :class:`~.SparseHamiltonian`. The possible methods are ``'LM'`` (largest in magnitude), ``'SM'`` (smallest in magnitude), ``'LA'`` (largest algebraic), ``'SA'`` (smallest algebraic) and ``'BE'`` (:math:`k/2` from each end of the spectrum). Returns: TensorLike or qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: If an operator is provided as input, the eigenvalues are returned directly in the form of a tensor. Otherwise, the transformed circuit is returned as described in :func:`qml.transform <pennylane.transform>`. Executing this circuit will provide the eigenvalues as a tensor. **Example** Given an operation, ``qml.eigvals`` returns the eigenvalues: >>> op = qml.Z(0) @ qml.X(1) - 0.5 * qml.Y(1) >>> qml.eigvals(op) array([-1.11803399, -1.11803399, 1.11803399, 1.11803399]) It can also be used in a functional form: >>> x = torch.tensor(0.6, requires_grad=True) >>> eigval_fn = qml.eigvals(qml.RX) >>> eigval_fn(x, wires=0) tensor([0.9553+0.2955j, 0.9553-0.2955j], grad_fn=<LinalgEigBackward>) In its functional form, it is fully differentiable with respect to gate arguments: >>> loss = torch.real(torch.sum(eigval_fn(x, wires=0))) >>> loss.backward() >>> x.grad tensor(-0.2955) This operator transform can also be applied to QNodes, tapes, and quantum functions that contain multiple operations; see Usage Details below for more details. .. details:: :title: Usage Details ``qml.eigvals`` can also be used with QNodes, tapes, or quantum functions that contain multiple operations. However, in this situation, **eigenvalues may be computed numerically**. This can lead to a large computational overhead for a large number of wires. Consider the following quantum function: .. code-block:: python3 def circuit(theta): qml.RX(theta, wires=1) qml.Z(0) We can use ``qml.eigvals`` to generate a new function that returns the eigenvalues corresponding to the function ``circuit``: >>> eigvals_fn = qml.eigvals(circuit) >>> theta = np.pi / 4 >>> eigvals_fn(theta) array([ 0.92387953+0.38268343j, 0.92387953-0.38268343j, -0.92387953+0.38268343j, -0.92387953-0.38268343j]) """ifnotisinstance(op,qml.operation.Operator):ifnotisinstance(op,(qml.tape.QuantumScript,qml.QNode))andnotcallable(op):raiseTransformError("Input is not an Operator, tape, QNode, or quantum function")return_eigvals_tranform(op,k=k,which=which)ifisinstance(op,qml.SparseHamiltonian):sparse_matrix=op.sparse_matrix()ifk<sparse_matrix.shape[0]-1:returnscipy.sparse.linalg.eigsh(sparse_matrix,k=k,which=which)[0]returnqml.math.linalg.eigvalsh(sparse_matrix.toarray())# TODO: make `eigvals` take a `wire_order` argument to mimic `matrix`try:returnop.eigvals()exceptqml.operation.EigvalsUndefinedError:returneigvals(qml.tape.QuantumScript(op.decomposition()),k=k,which=which)
@partial(transform,is_informative=True)def_eigvals_tranform(tape:QuantumScript,k=1,which="SA")->tuple[QuantumScriptBatch,PostprocessingFn]:defprocessing_fn(res):[qs]=resop_wires=[op.wiresforopinqs.operations]all_wires=qml.wires.Wires.all_wires(op_wires).tolist()unique_wires=qml.wires.Wires.unique_wires(op_wires).tolist()iflen(all_wires)!=len(unique_wires):warnings.warn("For multiple operations, the eigenvalues will be computed numerically. ""This may be computationally intensive for a large number of wires.",UserWarning,)matrix=qml.matrix(qs,wire_order=qs.wires)returnqml.math.linalg.eigvals(matrix)# TODO: take into account wire ordering, by reordering eigenvalues# as per operator wires/wire ordering, and by inserting implicit identity# matrices (eigenvalues [1, 1]) at missing locations.ev=[eigvals(op,k=k,which=which)foropinqs.operations]iflen(ev)==1:returnev[0]returnreduce(qml.math.kron,ev)return[tape],processing_fn