Source code for pennylane.ops.functions.evolve
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the qml.evolve function.
"""
from functools import singledispatch
from pennylane.operation import Operator
from pennylane.ops import Evolution
from pennylane.pulse import ParametrizedEvolution, ParametrizedHamiltonian
[docs]@singledispatch
def evolve(*args, **kwargs): # pylint: disable=unused-argument
r"""This method is dispatched and its functionality depends on the type of the input ``op``.
.. raw:: html
<html>
<h3>Input: Operator</h3>
<hr>
</html>
Returns a new operator that computes the evolution of ``op``.
.. math::
e^{-i x \bm{O}}
Args:
op (.Operator): operator to evolve
coeff (float): coefficient multiplying the exponentiated operator
Returns:
.Evolution: evolution operator
**Examples**
We can use ``qml.evolve`` to compute the evolution of any PennyLane operator:
>>> op = qml.evolve(qml.X(0), coeff=2)
>>> op
Exp(-2j PauliX)
.. raw:: html
<html>
<h3>Input: ParametrizedHamiltonian</h3>
<hr>
</html>
Args:
op (.ParametrizedHamiltonian): Hamiltonian to evolve
Returns:
.ParametrizedEvolution: time evolution :math:`U(t_0, t_1)` of the Hamiltonian
The function takes a :class:`.ParametrizedHamiltonian` and solves the time-dependent Schrodinger equation
.. math:: \frac{\partial}{\partial t} |\psi\rangle = -i H(t) |\psi\rangle
It returns a :class:`~.ParametrizedEvolution`, :math:`U(t_0, t_1)`, which is the solution to the time-dependent
Schrodinger equation for the :class:`~.ParametrizedHamiltonian`, such that
.. math:: |\psi(t_1)\rangle = U(t_0, t_1) |\psi(t_0)\rangle
The :class:`~.ParametrizedEvolution` class uses a numerical ordinary differential equation
solver (`here <https://github.com/google/jax/blob/main/jax/experimental/ode.py>`_).
**Examples**
When evolving a :class:`.ParametrizedHamiltonian`, a :class:`.ParametrizedEvolution`
instance is returned:
.. code-block:: python3
coeffs = [lambda p, t: p * t for _ in range(4)]
ops = [qml.X(i) for i in range(4)]
# ParametrizedHamiltonian
H = qml.dot(coeffs, ops)
# ParametrizedEvolution
ev = qml.evolve(H)
>>> ev
ParametrizedEvolution(wires=[0, 1, 2, 3])
The :class:`.ParametrizedEvolution` is an :class:`~.Operator`, but does not have a defined matrix unless it
is evaluated at set parameters. This is done by calling the :class:`.ParametrizedEvolution`, which has the call
signature ``(p, t)``:
>>> qml.matrix(ev([1., 2., 3., 4.], t=[0, 4]))
Array([[ 0.04930558+0.j , 0. -0.03259093j,
0. +0.1052632j , 0.06957878+0.j ,
0. -0.01482305j, -0.00979751+0.j ,
0.03164552+0.j , 0. -0.0209179j ,
0. +0.33526757j, 0.22161038+0.j ,
...
...
...
0. -0.03259093j, 0.04930566+0.j ]], dtype=complex64)
Additional options regarding how the matrix is calculated can be passed to the :class:`.ParametrizedEvolution`
along with the parameters, as keyword arguments. These options are:
- ``atol (float, optional)``: Absolute error tolerance
- ``rtol (float, optional)``: Relative error tolerance
- ``mxstep (int, optional)``: maximum number of steps to take for each time point
- ``hmax (float, optional)``: maximum step size
If not specified, they will default to predetermined values.
The :class:`~.ParametrizedEvolution` can be implemented in a QNode:
.. code-block:: python
import jax
jax.config.update("jax_enable_x64", True)
dev = qml.device("default.qubit")
@jax.jit
@qml.qnode(dev, interface="jax")
def circuit(params):
qml.evolve(H)(params, t=[0, 10])
return qml.expval(qml.Z(0))
>>> params = [1., 2., 3., 4.]
>>> circuit(params)
Array(0.86231063, dtype=float64)
>>> jax.grad(circuit)(params)
[Array(50.391273, dtype=float64),
Array(-9.42415807e-05, dtype=float64),
Array(-0.0001049, dtype=float64),
Array(-0.00010601, dtype=float64)]
.. note::
In the example above, the decorator ``@jax.jit`` is used to compile this execution just-in-time. This means
the first execution will typically take a little longer with the benefit that all following executions
will be significantly faster, see the jax docs on jitting. JIT-compiling is optional, and one can remove
the decorator when only single executions are of interest.
"""
# pylint: disable=missing-docstring
@evolve.register
def parametrized_evolution(op: ParametrizedHamiltonian, **kwargs):
return ParametrizedEvolution(H=op, **kwargs)
# pylint: disable=missing-docstring
@evolve.register
def evolution(op: Operator, coeff: float = 1, num_steps: int = None):
return Evolution(op, coeff, num_steps)
_modules/pennylane/ops/functions/evolve
Download Python script
Download Notebook
View on GitHub