Source code for pennylane.ops.functions.evolve

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the qml.evolve function.
"""
from functools import singledispatch

from pennylane.operation import Operator
from pennylane.ops import Evolution
from pennylane.pulse import ParametrizedEvolution, ParametrizedHamiltonian


[docs]@singledispatch def evolve(*args, **kwargs): # pylint: disable=unused-argument r"""This method is dispatched and its functionality depends on the type of the input ``op``. .. raw:: html <html> <h3>Input: Operator</h3> <hr> </html> Returns a new operator that computes the evolution of ``op``. .. math:: e^{-i x \bm{O}} Args: op (.Operator): operator to evolve coeff (float): coefficient multiplying the exponentiated operator Returns: .Evolution: evolution operator **Examples** We can use ``qml.evolve`` to compute the evolution of any PennyLane operator: >>> op = qml.evolve(qml.X(0), coeff=2) >>> op Exp(-2j PauliX) .. raw:: html <html> <h3>Input: ParametrizedHamiltonian</h3> <hr> </html> Args: op (.ParametrizedHamiltonian): Hamiltonian to evolve Returns: .ParametrizedEvolution: time evolution :math:`U(t_0, t_1)` of the Hamiltonian The function takes a :class:`.ParametrizedHamiltonian` and solves the time-dependent Schrodinger equation .. math:: \frac{\partial}{\partial t} |\psi\rangle = -i H(t) |\psi\rangle It returns a :class:`~.ParametrizedEvolution`, :math:`U(t_0, t_1)`, which is the solution to the time-dependent Schrodinger equation for the :class:`~.ParametrizedHamiltonian`, such that .. math:: |\psi(t_1)\rangle = U(t_0, t_1) |\psi(t_0)\rangle The :class:`~.ParametrizedEvolution` class uses a numerical ordinary differential equation solver (`here <https://github.com/google/jax/blob/main/jax/experimental/ode.py>`_). **Examples** When evolving a :class:`.ParametrizedHamiltonian`, a :class:`.ParametrizedEvolution` instance is returned: .. code-block:: python3 coeffs = [lambda p, t: p * t for _ in range(4)] ops = [qml.X(i) for i in range(4)] # ParametrizedHamiltonian H = qml.dot(coeffs, ops) # ParametrizedEvolution ev = qml.evolve(H) >>> ev ParametrizedEvolution(wires=[0, 1, 2, 3]) The :class:`.ParametrizedEvolution` is an :class:`~.Operator`, but does not have a defined matrix unless it is evaluated at set parameters. This is done by calling the :class:`.ParametrizedEvolution`, which has the call signature ``(p, t)``: >>> qml.matrix(ev([1., 2., 3., 4.], t=[0, 4])) Array([[ 0.04930558+0.j , 0. -0.03259093j, 0. +0.1052632j , 0.06957878+0.j , 0. -0.01482305j, -0.00979751+0.j , 0.03164552+0.j , 0. -0.0209179j , 0. +0.33526757j, 0.22161038+0.j , ... ... ... 0. -0.03259093j, 0.04930566+0.j ]], dtype=complex64) Additional options regarding how the matrix is calculated can be passed to the :class:`.ParametrizedEvolution` along with the parameters, as keyword arguments. These options are: - ``atol (float, optional)``: Absolute error tolerance - ``rtol (float, optional)``: Relative error tolerance - ``mxstep (int, optional)``: maximum number of steps to take for each time point - ``hmax (float, optional)``: maximum step size If not specified, they will default to predetermined values. The :class:`~.ParametrizedEvolution` can be implemented in a QNode: .. code-block:: python import jax jax.config.update("jax_enable_x64", True) dev = qml.device("default.qubit") @jax.jit @qml.qnode(dev, interface="jax") def circuit(params): qml.evolve(H)(params, t=[0, 10]) return qml.expval(qml.Z(0)) >>> params = [1., 2., 3., 4.] >>> circuit(params) Array(0.86231063, dtype=float64) >>> jax.grad(circuit)(params) [Array(50.391273, dtype=float64), Array(-9.42415807e-05, dtype=float64), Array(-0.0001049, dtype=float64), Array(-0.00010601, dtype=float64)] .. note:: In the example above, the decorator ``@jax.jit`` is used to compile this execution just-in-time. This means the first execution will typically take a little longer with the benefit that all following executions will be significantly faster, see the jax docs on jitting. JIT-compiling is optional, and one can remove the decorator when only single executions are of interest. """
# pylint: disable=missing-docstring @evolve.register def parametrized_evolution(op: ParametrizedHamiltonian, **kwargs): return ParametrizedEvolution(H=op, **kwargs) # pylint: disable=missing-docstring @evolve.register def evolution(op: Operator, coeff: float = 1, num_steps: int = None): return Evolution(op, coeff, num_steps)