Source code for pennylane.ops.op_math.condition

# Copyright 2022 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains the condition transform.
"""
import functools
from functools import wraps
from typing import Callable, Optional, Sequence, Type

import pennylane as qml
from pennylane import QueuingManager
from pennylane.capture.capture_diff import create_non_interpreted_prim
from pennylane.capture.flatfn import FlatFn
from pennylane.compiler import compiler
from pennylane.measurements import MeasurementValue
from pennylane.operation import AnyWires, Operation, Operator
from pennylane.ops.op_math.symbolicop import SymbolicOp


class ConditionalTransformError(ValueError):
    """Error for using qml.cond incorrectly"""


[docs]class Conditional(SymbolicOp, Operation): """A Conditional Operation. Unless you are a Pennylane plugin developer, **you should NOT directly use this class**, instead, use the :func:`qml.cond <.cond>` function. The ``Conditional`` class is a container class that defines an operation that should be applied relative to a single measurement value. Support for executing ``Conditional`` operations is device-dependent. If a device doesn't support mid-circuit measurements natively, then the QNode will apply the :func:`defer_measurements` transform. Args: expr (MeasurementValue): the measurement outcome value to consider then_op (Operation): the PennyLane operation to apply conditionally id (str): custom label given to an operator instance, can be useful for some applications where the instance has to be identified """ num_wires = AnyWires def __init__(self, expr, then_op: Type[Operation], id=None): self.hyperparameters["meas_val"] = expr self._name = f"Conditional({then_op.name})" super().__init__(then_op, id=id) if self.grad_recipe is None: self.grad_recipe = [None] * self.num_params
[docs] def label(self, decimals=None, base_label=None, cache=None): return self.base.label(decimals=decimals, base_label=base_label, cache=cache)
@property def meas_val(self): """the measurement outcome value to consider from `expr` argument""" return self.hyperparameters["meas_val"] @property def num_params(self): return self.base.num_params @property def ndim_params(self): return self.base.ndim_params
[docs] def map_wires(self, wire_map): meas_val = self.meas_val.map_wires(wire_map) then_op = self.base.map_wires(wire_map) return Conditional(meas_val, then_op=then_op)
[docs] def matrix(self, wire_order=None): return self.base.matrix(wire_order=wire_order)
# pylint: disable=arguments-renamed, invalid-overridden-method @property def has_diagonalizing_gates(self): return self.base.has_diagonalizing_gates
[docs] def diagonalizing_gates(self): return self.base.diagonalizing_gates()
[docs] def eigvals(self): return self.base.eigvals()
@property def has_adjoint(self): return self.base.has_adjoint
[docs] def adjoint(self): return Conditional(self.meas_val, self.base.adjoint())
class CondCallable: # pylint:disable=too-few-public-methods """Base class to represent a conditional function with boolean predicates. Args: condition (bool): a conditional expression true_fn (callable): The function to apply if ``condition`` is ``True`` false_fn (callable): The function to apply if ``condition`` is ``False`` elifs (List(Tuple(bool, callable))): A list of (bool, elif_fn) clauses. Passing ``false_fn`` and ``elifs`` on initialization is optional; these functions can be registered post-initialization via decorators: .. code-block:: python def f(x): @qml.cond(x > 0) def conditional(y): return y ** 2 @conditional.else_if(x < -2) def conditional(y): return y @conditional.otherwise def conditional_false_fn(y): return -y return conditional(x + 1) >>> [f(0.5), f(-3), f(-0.5)] [2.25, -2, -0.5] """ def __init__(self, condition, true_fn, false_fn=None, elifs=()): self.preds = [condition] self.branch_fns = [true_fn] self.otherwise_fn = false_fn # when working with `qml.capture.enabled()`, # it's easier to store the original `elifs` argument self.orig_elifs = elifs if false_fn is None and not qml.capture.enabled(): self.otherwise_fn = lambda *args, **kwargs: None if elifs and not qml.capture.enabled(): elif_preds, elif_fns = list(zip(*elifs)) self.preds.extend(elif_preds) self.branch_fns.extend(elif_fns) def else_if(self, pred): """Decorator that allows else-if functions to be registered with a corresponding boolean predicate. Args: pred (bool): The predicate that will determine if this branch is executed. Returns: callable: decorator that is applied to the else-if function """ def decorator(branch_fn): self.preds.append(pred) self.branch_fns.append(branch_fn) self.orig_elifs += ((pred, branch_fn),) return self return decorator def otherwise(self, otherwise_fn): """Decorator that registers the function to be run if all conditional predicates (including optional) evaluates to ``False``. Args: otherwise_fn (callable): the function to apply if all ``self.preds`` evaluate to ``False`` """ self.otherwise_fn = otherwise_fn return self @property def false_fn(self): """callable: the function to apply if all ``self.preds`` evaluate to ``False``""" return self.otherwise_fn @property def true_fn(self): """callable: the function to apply if all ``self.condition`` evaluate to ``True``""" return self.branch_fns[0] @property def condition(self): """bool: the condition that determines if ``self.true_fn`` is applied""" return self.preds[0] @property def elifs(self): """(List(Tuple(bool, callable))): a list of (bool, elif_fn) clauses""" return list(zip(self.preds[1:], self.branch_fns[1:])) def __call_capture_disabled(self, *args, **kwargs): # python fallback for pred, branch_fn in zip(self.preds, self.branch_fns): if pred: return branch_fn(*args, **kwargs) return self.false_fn(*args, **kwargs) # pylint: disable=not-callable def __call_capture_enabled(self, *args, **kwargs): import jax # pylint: disable=import-outside-toplevel cond_prim = _get_cond_qfunc_prim() elifs = ( [self.orig_elifs] if len(self.orig_elifs) > 0 and not isinstance(self.orig_elifs[0], tuple) else list(self.orig_elifs) ) flat_true_fn = FlatFn(self.true_fn) branches = [(self.preds[0], flat_true_fn), *elifs, (True, self.otherwise_fn)] end_const_ind = len( branches ) # consts go after the len(branches) conditions, first const at len(branches) conditions = [] jaxpr_branches = [] consts = [] consts_slices = [] for pred, fn in branches: conditions.append(pred) if fn is None: jaxpr_branches.append(None) consts_slices.append(slice(0, 0)) else: jaxpr = jax.make_jaxpr(functools.partial(fn, **kwargs))(*args) jaxpr_branches.append(jaxpr.jaxpr) consts_slices.append(slice(end_const_ind, end_const_ind + len(jaxpr.consts))) consts += jaxpr.consts end_const_ind += len(jaxpr.consts) flat_args, _ = jax.tree_util.tree_flatten(args) results = cond_prim.bind( *conditions, *consts, *flat_args, jaxpr_branches=jaxpr_branches, consts_slices=consts_slices, args_slice=slice(end_const_ind, None), ) assert flat_true_fn.out_tree is not None if flat_true_fn.out_tree.num_leaves != len(results): # undefined false fn leads to empty results return results return jax.tree_util.tree_unflatten(flat_true_fn.out_tree, results) def __call__(self, *args, **kwargs): if qml.capture.enabled(): return self.__call_capture_enabled(*args, **kwargs) return self.__call_capture_disabled(*args, **kwargs)
[docs]def cond( condition, true_fn: Callable = None, false_fn: Optional[Callable] = None, elifs: Sequence = () ): """Quantum-compatible if-else conditionals --- condition quantum operations on parameters such as the results of mid-circuit qubit measurements. This method is restricted to simply branching on mid-circuit measurement results when it is not used with the :func:`~.qjit` decorator. When used with the :func:`~.qjit` decorator, this function allows for general if-elif-else constructs. All ``true_fn``, ``false_fn`` and ``elifs`` branches will be captured by Catalyst, the just-in-time (JIT) compiler, with the executed branch determined at runtime. For more details, please see :func:`catalyst.cond`. .. note:: With the Python interpreter, support for :func:`~.cond` is device-dependent. If a device doesn't support mid-circuit measurements natively, then the QNode will apply the :func:`defer_measurements` transform. .. note:: When used with :func:`~.qjit`, this function only supports the Catalyst compiler. See :func:`catalyst.cond` for more details. Please see the Catalyst :doc:`quickstart guide <catalyst:dev/quick_start>`, as well as the :doc:`sharp bits and debugging tips <catalyst:dev/sharp_bits>`. .. note:: When used with :func:`.pennylane.capture.enabled`, this function allows for general if-elif-else constructs. As with the JIT mode, all branches are captured, with the executed branch determined at runtime. Each branch can receive arguments, but the arguments must be JAX-compatible. If a branch returns one or more variables, every other branch must return the same abstract values. Args: condition (Union[.MeasurementValue, bool]): a conditional expression that may involve a mid-circuit measurement value (see :func:`.pennylane.measure`). true_fn (callable): The quantum function or PennyLane operation to apply if ``condition`` is ``True`` false_fn (callable): The quantum function or PennyLane operation to apply if ``condition`` is ``False`` elifs (Sequence(Tuple(bool, callable))): A sequence of (bool, elif_fn) clauses. Can only be used when decorated by :func:`~.qjit` or if the condition is not a mid-circuit measurement. Returns: function: A new function that applies the conditional equivalent of ``true_fn``. The returned function takes the same input arguments as ``true_fn``. **Example** .. code-block:: python3 dev = qml.device("default.qubit", wires=3) @qml.qnode(dev) def qnode(x, y): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qml.RY)(x, wires=1) qml.Hadamard(2) qml.RY(-np.pi/2, wires=[2]) m_1 = qml.measure(2) qml.cond(m_1 == 0, qml.RX)(y, wires=1) return qml.expval(qml.Z(1)) .. code-block :: pycon >>> first_par = np.array(0.3) >>> sec_par = np.array(1.23) >>> qnode(first_par, sec_par) tensor(0.32677361, requires_grad=True) .. note:: If the first argument of ``cond`` is a measurement value (e.g., ``m_0`` in ``qml.cond(m_0, qml.RY)``), then ``m_0 == 1`` is considered internally. .. warning:: Expressions with boolean logic flow using operators like ``and``, ``or`` and ``not`` are not supported as the ``condition`` argument. While such statements may not result in errors, they may result in incorrect behaviour. In just-in-time (JIT) mode using the :func:`~.qjit` decorator, .. code-block:: python3 dev = qml.device("lightning.qubit", wires=1) @qml.qjit @qml.qnode(dev) def circuit(x: float): def ansatz_true(): qml.RX(x, wires=0) qml.Hadamard(wires=0) def ansatz_false(): qml.RY(x, wires=0) qml.cond(x > 1.4, ansatz_true, ansatz_false)() return qml.expval(qml.Z(0)) >>> circuit(1.4) Array(0.16996714, dtype=float64) >>> circuit(1.6) Array(0., dtype=float64) Additional 'else-if' clauses can also be included via the ``elif`` argument: .. code-block:: python3 @qml.qjit @qml.qnode(dev) def circuit(x): def true_fn(): qml.RX(x, wires=0) def elif_fn(): qml.RY(x, wires=0) def false_fn(): qml.RX(x ** 2, wires=0) qml.cond(x > 2.7, true_fn, false_fn, ((x > 1.4, elif_fn),))() return qml.expval(qml.Z(0)) >>> circuit(1.2) Array(0.13042371, dtype=float64) .. note:: If the above syntax is used with a ``QNode`` that is not decorated with :func:`~pennylane.qjit` and none of the predicates contain mid-circuit measurements, ``qml.cond`` will fall back to using native Python ``if``-``elif``-``else`` blocks. .. details:: :title: Usage Details **Conditional quantum functions** The ``cond`` transform allows conditioning quantum functions too: .. code-block:: python3 dev = qml.device("default.qubit") def qfunc(par, wires): qml.Hadamard(wires[0]) qml.RY(par, wires[0]) @qml.qnode(dev) def qnode(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc)(x, wires=[1]) return qml.expval(qml.Z(1)) .. code-block :: pycon >>> par = np.array(0.3) >>> qnode(par) tensor(0.3522399, requires_grad=True) **Postprocessing multiple measurements into a condition** The Boolean condition for ``cond`` may consist of arithmetic expressions of one or multiple mid-circuit measurements: .. code-block:: python3 def cond_fn(mcms): first_term = np.prod(mcms) second_term = (2 ** np.arange(len(mcms))) @ mcms return (1 - first_term) * (second_term > 3) @qml.qnode(dev) def qnode(x): ... mcms = [qml.measure(w) for w in range(4)] qml.cond(cond_fn(mcms), qml.RX)(x, wires=4) ... return qml.expval(qml.Z(1)) **Passing two quantum functions** In the qubit model, single-qubit measurements may result in one of two outcomes. Such measurement outcomes may then be used to create conditional expressions. According to the truth value of the conditional expression passed to ``cond``, the transform can apply a quantum function in both the ``True`` and ``False`` case: .. code-block:: python3 dev = qml.device("default.qubit", wires=2) def qfunc1(x, wires): qml.Hadamard(wires[0]) qml.RY(x, wires[0]) def qfunc2(x, wires): qml.Hadamard(wires[0]) qml.RZ(x, wires[0]) @qml.qnode(dev) def qnode1(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc1, qfunc2)(x, wires=[1]) return qml.expval(qml.Z(1)) .. code-block :: pycon >>> par = np.array(0.3) >>> qnode1(par) tensor(-0.1477601, requires_grad=True) The previous QNode is equivalent to using ``cond`` twice, inverting the conditional expression in the second case using the ``~`` unary operator: .. code-block:: python3 @qml.qnode(dev) def qnode2(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc1)(x, wires=[1]) qml.cond(~m_0, qfunc2)(x, wires=[1]) return qml.expval(qml.Z(1)) .. code-block :: pycon >>> qnode2(par) tensor(-0.1477601, requires_grad=True) **Quantum functions with different signatures** It may be that the two quantum functions passed to ``qml.cond`` have different signatures. In such a case, ``lambda`` functions taking no arguments can be used with Python closure: .. code-block:: python3 dev = qml.device("default.qubit", wires=2) def qfunc1(x, wire): qml.Hadamard(wire) qml.RY(x, wire) def qfunc2(x, y, z, wire): qml.Hadamard(wire) qml.Rot(x, y, z, wire) @qml.qnode(dev) def qnode(a, x, y, z): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, lambda: qfunc1(a, wire=1), lambda: qfunc2(x, y, z, wire=1))() return qml.expval(qml.Z(1)) .. code-block :: pycon >>> par = np.array(0.3) >>> x = np.array(1.2) >>> y = np.array(1.1) >>> z = np.array(0.3) >>> qnode(par, x, y, z) tensor(-0.30922805, requires_grad=True) """ if active_jit := compiler.active_compiler(): available_eps = compiler.AvailableCompilers.names_entrypoints ops_loader = available_eps[active_jit]["ops"].load() if true_fn is None: return ops_loader.cond(condition) cond_func = ops_loader.cond(condition)(true_fn) # Optional 'elif' branches for cond_val, elif_fn in elifs: cond_func.else_if(cond_val)(elif_fn) # Optional 'else' branch if false_fn: cond_func.otherwise(false_fn) return cond_func if not isinstance(condition, MeasurementValue): # The condition is not a mid-circuit measurement. This will also work # when the condition is a mid-circuit measurement but qml.capture.enabled() if true_fn is None: return lambda fn: CondCallable(condition, fn) return CondCallable(condition, true_fn, false_fn, elifs) if true_fn is None: raise TypeError( "cond missing 1 required positional argument: 'true_fn'.\n" "Note that if the conditional includes a mid-circuit measurement, " "qml.cond cannot be used as a decorator.\n" "Instead, please use the form qml.cond(condition, true_fn, false_fn)." ) if elifs: raise ConditionalTransformError( "'elif' branches are not supported when not using @qjit and with qml.capture.disabled()\n" "if the conditional includes mid-circuit measurements." ) if callable(true_fn): # We assume that the callable is an operation or a quantum function with_meas_err = ( "Only quantum functions that contain no measurements can be applied conditionally." ) @wraps(true_fn) def wrapper(*args, **kwargs): # We assume that the callable is a quantum function recorded_ops = [a for a in args if isinstance(a, Operator)] + [ k for k in kwargs.values() if isinstance(k, Operator) ] # This will dequeue all operators passed in as arguments to the qfunc that is # being conditioned. These are queued incorrectly due to be fully constructed # before the wrapper function is called. if recorded_ops and QueuingManager.recording(): for op in recorded_ops: QueuingManager.remove(op) # 1. Apply true_fn conditionally qscript = qml.tape.make_qscript(true_fn)(*args, **kwargs) if qscript.measurements: raise ConditionalTransformError(with_meas_err) for op in qscript.operations: Conditional(condition, op) if false_fn is not None: # 2. Apply false_fn conditionally else_qscript = qml.tape.make_qscript(false_fn)(*args, **kwargs) if else_qscript.measurements: raise ConditionalTransformError(with_meas_err) inverted_condition = ~condition for op in else_qscript.operations: Conditional(inverted_condition, op) else: raise ConditionalTransformError( "Only operations and quantum functions with no measurements can be applied conditionally." ) return wrapper
def _validate_abstract_values( outvals: list, expected_outvals: list, branch_type: str, index: int = None ) -> None: """Ensure the collected abstract values match the expected ones.""" if len(outvals) != len(expected_outvals): raise ValueError( f"Mismatch in number of output variables in {branch_type} branch" f"{'' if index is None else ' #' + str(index)}: " f"{len(outvals)} vs {len(expected_outvals)}" ) for i, (outval, expected_outval) in enumerate(zip(outvals, expected_outvals)): if outval != expected_outval: raise ValueError( f"Mismatch in output abstract values in {branch_type} branch" f"{'' if index is None else ' #' + str(index)} at position {i}: " f"{outval} vs {expected_outval}" ) def _get_mcm_predicates(conditions: tuple[MeasurementValue]) -> list[MeasurementValue]: """Helper function to update predicates with mid-circuit measurements""" new_conds = [conditions[0]] false_cond = ~conditions[0] for c in conditions[1:]: new_conds.append(false_cond & c) false_cond = false_cond & ~c new_conds.append(false_cond) return new_conds @functools.lru_cache def _get_cond_qfunc_prim(): """Get the cond primitive for quantum functions.""" import jax # pylint: disable=import-outside-toplevel cond_prim = create_non_interpreted_prim()("cond") cond_prim.multiple_results = True @cond_prim.def_impl def _(*all_args, jaxpr_branches, consts_slices, args_slice): n_branches = len(jaxpr_branches) conditions = all_args[:n_branches] args = all_args[args_slice] # Find predicates that use mid-circuit measurements. We don't check the last # condition as that is always `True`. mcm_conditions = tuple( pred for pred in conditions[:-1] if isinstance(pred, MeasurementValue) ) if len(mcm_conditions) != 0: if len(mcm_conditions) != len(conditions) - 1: raise ConditionalTransformError( "Cannot use qml.cond with a combination of mid-circuit measurements " "and other classical conditions as predicates." ) conditions = _get_mcm_predicates(mcm_conditions) for pred, jaxpr, const_slice in zip(conditions, jaxpr_branches, consts_slices): consts = all_args[const_slice] if jaxpr is None: continue if isinstance(pred, qml.measurements.MeasurementValue): with qml.queuing.AnnotatedQueue() as q: out = jax.core.eval_jaxpr(jaxpr, consts, *args) if len(out) != 0: raise ConditionalTransformError( "Only quantum functions without return values can be applied " "conditionally with mid-circuit measurement predicates." ) for wrapped_op in q: Conditional(pred, wrapped_op.obj) elif pred: return jax.core.eval_jaxpr(jaxpr, consts, *args) return () @cond_prim.def_abstract_eval def _(*_, jaxpr_branches, **__): outvals_true = [out.aval for out in jaxpr_branches[0].outvars] for idx, jaxpr_branch in enumerate(jaxpr_branches): if idx == 0: continue if jaxpr_branch is None: if outvals_true: raise ValueError( "The false branch must be provided if the true branch returns any variables" ) # this is tested, but coverage does not pick it up continue # pragma: no cover outvals_branch = [out.aval for out in jaxpr_branch.outvars] branch_type = "elif" if idx < len(jaxpr_branches) - 1 else "false" _validate_abstract_values(outvals_branch, outvals_true, branch_type, idx - 1) # We return the abstract values of the true branch since the abstract values # of the other branches (if they exist) should be the same return outvals_true return cond_prim