Source code for pennylane.ops.op_math.controlled_decompositions

# Copyright 2018-2023 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule defines functions to decompose controlled operations
"""

from copy import copy
from typing import Optional

import numpy as np
import numpy.linalg as npl

import pennylane as qml
from pennylane import math
from pennylane.operation import Operation, Operator
from pennylane.ops.op_math.decompositions.single_qubit_unitary import (
    _get_single_qubit_rot_angles_via_matrix,
)
from pennylane.wires import Wires


def _is_single_qubit_special_unitary(op):
    mat = op.matrix()
    det = mat[0, 0] * mat[1, 1] - mat[0, 1] * mat[1, 0]
    return qml.math.allclose(det, 1)


def _convert_to_su2(U, return_global_phase=False):
    r"""Convert a 2x2 unitary matrix to :math:`SU(2)`.

    Args:
        U (array[complex]): A matrix, presumed to be :math:`2 \times 2` and unitary.
        return_global_phase (bool): If `True`, the return will include
        the global phase. If `False`, only the :math:`SU(2)` representative
        is returned.

    Returns:
        array[complex]: A :math:`2 \times 2` matrix in :math:`SU(2)` that is
        equivalent to U up to a global phase. If ``return_global_phase=True``,
        a 2-element tuple is returned, with the first element being the
        :math:`SU(2)` equivalent and the second, the global phase.
    """
    # Compute the determinants
    with np.errstate(divide="ignore", invalid="ignore"):
        dets = math.linalg.det(U)

    global_phase = math.cast_like(math.angle(dets), 1.0) / 2
    U_SU2 = math.cast_like(U, dets) * math.exp(-1j * global_phase)
    return (U_SU2, global_phase) if return_global_phase else U_SU2


def _convert_to_real_diagonal(q: np.ndarray) -> np.ndarray:
    """
    Change the phases of Q so the main diagonal is real, and return the modified Q.
    """
    exp_angles = np.angle(np.diag(q))
    return q * np.exp(-1j * exp_angles).reshape((1, 2))


def _param_su2(ar: float, ai: float, br: float, bi: float):
    """
    Create a matrix in the SU(2) form from complex parameters a, b.
    The resulting matrix is not guaranteed to be in SU(2), unless |a|^2 + |b|^2 = 1.
    """
    return np.array([[ar + 1j * ai, -br + 1j * bi], [br + 1j * bi, ar + 1j * -ai]])


def _bisect_compute_a(u: np.ndarray):
    """
    Given the U matrix, compute the A matrix such that
    At x A x At x A x = U
    where At is the adjoint of A
    and x is the Pauli X matrix.
    """
    x = np.real(u[0, 1])
    z = u[1, 1]
    zr = np.real(z)
    zi = np.imag(z)
    if np.isclose(zr, -1):
        # special case [[-1, 0], [0, -1]]
        # would cause divide by 0 with the other formula, so we use hardcoded solution
        return np.array([[1, -1], [1, 1]]) * 2**-0.5
    ar = np.sqrt((np.sqrt((zr + 1) / 2) + 1) / 2)
    mul = 1 / (2 * np.sqrt((zr + 1) * (np.sqrt((zr + 1) / 2) + 1)))
    ai = zi * mul
    br = x * mul
    bi = 0
    return _param_su2(ar, ai, br, bi)


def _bisect_compute_b(u: np.ndarray):
    """
    Given the U matrix, compute the B matrix such that
    H Bt x B x H = U
    where Bt is the adjoint of B,
    H is the Hadamard matrix,
    and x is the Pauli X matrix.
    """
    sqrt = np.sqrt
    Abs = np.abs
    w = np.real(u[0, 0])
    s = np.real(u[1, 0])
    t = np.imag(u[1, 0])
    if np.isclose(s, 0):
        b = 0
        if np.isclose(t, 0):
            if w < 0:
                c = 0
                d = sqrt(-w)
            else:
                c = sqrt(w)
                d = 0
        else:
            c = sqrt(2 - 2 * w) * (-w / 2 - 1 / 2) / t
            d = sqrt(2 - 2 * w) / 2
    elif np.isclose(t, 0):
        b = (1 / 2 - w / 2) * sqrt(2 * w + 2) / s
        c = sqrt(2 * w + 2) / 2
        d = 0
    else:
        b = sqrt(2) * s * sqrt((1 - w) / (s**2 + t**2)) * Abs(t) / (2 * t)
        c = sqrt(2) * sqrt((1 - w) / (s**2 + t**2)) * (w + 1) * Abs(t) / (2 * t)
        d = -sqrt(2) * sqrt((1 - w) / (s**2 + t**2)) * Abs(t) / 2
    return _param_su2(c, d, b, 0)


def _multi_controlled_zyz(
    rot_angles,
    global_phase,
    target_wire: Wires,
    control_wires: Wires,
    work_wires: Optional[Wires] = None,
) -> list[Operator]:
    # The decomposition of zyz for special unitaries with multiple control wires
    # defined in Lemma 7.9 of https://arxiv.org/pdf/quant-ph/9503016

    if not qml.math.allclose(0.0, global_phase, atol=1e-6, rtol=0):
        raise ValueError(f"The global_phase should be zero, instead got: {global_phase}.")

    # Unpack the rotation angles
    phi, theta, omega = rot_angles

    # We use the conditional statements to account when decomposition is ran within a queue
    decomp = []

    cop_wires = (control_wires[-1], target_wire[0])

    # Add A operator
    if not qml.math.allclose(0.0, phi, atol=1e-8, rtol=0):
        decomp.append(qml.CRZ(phi, wires=cop_wires))
    if not qml.math.allclose(0.0, theta / 2, atol=1e-8, rtol=0):
        decomp.append(qml.CRY(theta / 2, wires=cop_wires))

    decomp.append(qml.ctrl(qml.X(target_wire), control=control_wires[:-1], work_wires=work_wires))

    # Add B operator
    if not qml.math.allclose(0.0, theta / 2, atol=1e-8, rtol=0):
        decomp.append(qml.CRY(-theta / 2, wires=cop_wires))
    if not qml.math.allclose(0.0, -(phi + omega) / 2, atol=1e-6, rtol=0):
        decomp.append(qml.CRZ(-(phi + omega) / 2, wires=cop_wires))

    decomp.append(qml.ctrl(qml.X(target_wire), control=control_wires[:-1], work_wires=work_wires))

    # Add C operator
    if not qml.math.allclose(0.0, (omega - phi) / 2, atol=1e-8, rtol=0):
        decomp.append(qml.CRZ((omega - phi) / 2, wires=cop_wires))

    return decomp


def _single_control_zyz(rot_angles, global_phase, target_wire, control_wires: Wires):
    # The zyz decomposition of a general unitary with single control wire
    # defined in Lemma 7.9 of https://arxiv.org/pdf/quant-ph/9503016

    # Unpack the rotation angles
    phi, theta, omega = rot_angles
    # We use the conditional statements to account when decomposition is ran within a queue
    decomp = []
    # Add negative of global phase. Compare definition of qml.GlobalPhase and Ph(delta) from section 4.1 of Barenco et al.
    if not qml.math.allclose(0.0, global_phase, atol=1e-8, rtol=0):
        decomp.append(
            qml.ctrl(qml.GlobalPhase(phi=-global_phase, wires=target_wire), control=control_wires)
        )
    # Add A operator
    if not qml.math.allclose(0.0, phi, atol=1e-8, rtol=0):
        decomp.append(qml.RZ(phi, wires=target_wire))
    if not qml.math.allclose(0.0, theta / 2, atol=1e-8, rtol=0):
        decomp.append(qml.RY(theta / 2, wires=target_wire))

    decomp.append(qml.ctrl(qml.X(target_wire), control=control_wires))

    # Add B operator
    if not qml.math.allclose(0.0, theta / 2, atol=1e-8, rtol=0):
        decomp.append(qml.RY(-theta / 2, wires=target_wire))
    if not qml.math.allclose(0.0, -(phi + omega) / 2, atol=1e-6, rtol=0):
        decomp.append(qml.RZ(-(phi + omega) / 2, wires=target_wire))

    decomp.append(qml.ctrl(qml.X(target_wire), control=control_wires))

    # Add C operator
    if not qml.math.allclose(0.0, (omega - phi) / 2, atol=1e-8, rtol=0):
        decomp.append(qml.RZ((omega - phi) / 2, wires=target_wire))

    return decomp


[docs]def ctrl_decomp_zyz( target_operation: Operator, control_wires: Wires, work_wires: Optional[Wires] = None ) -> list[Operator]: """Decompose the controlled version of a target single-qubit operation This function decomposes both single and multiple controlled single-qubit target operations using the decomposition defined in Lemma 4.3 and Lemma 5.1 for single `controlled_wires`, and Lemma 7.9 for multiple `controlled_wires` from `Barenco et al. (1995) <https://arxiv.org/abs/quant-ph/9503016>`_. Args: target_operation (~.operation.Operator): the target operation to decompose control_wires (~.wires.Wires): the control wires of the operation. Returns: list[Operation]: the decomposed operations Raises: ValueError: if ``target_operation`` is not a single-qubit operation **Example** We can create a controlled operation using `qml.ctrl`, or by creating the decomposed controlled version of using `qml.ctrl_decomp_zyz`. .. code-block:: python import pennylane as qml dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def expected_circuit(op): qml.Hadamard(wires=0) qml.ctrl(op, [0]) return qml.probs() @qml.qnode(dev) def decomp_circuit(op): qml.Hadamard(wires=0) qml.ops.ctrl_decomp_zyz(op, [0]) return qml.probs() Measurements on both circuits will give us the same results: >>> op = qml.RX(0.123, wires=1) >>> expected_circuit(op) tensor([0.5 , 0. , 0.49811126, 0.00188874], requires_grad=True) >>> decomp_circuit(op) tensor([0.5 , 0. , 0.49811126, 0.00188874], requires_grad=True) """ if len(target_operation.wires) != 1: raise ValueError( "The target operation must be a single-qubit operation, instead " f"got {target_operation.__class__.__name__}." ) control_wires = Wires(control_wires) target_wire = target_operation.wires if isinstance(target_operation, Operation): try: rot_angles = target_operation.single_qubit_rot_angles() except NotImplementedError: rot_angles = _get_single_qubit_rot_angles_via_matrix(qml.matrix(target_operation)) else: rot_angles = _get_single_qubit_rot_angles_via_matrix(qml.matrix(target_operation)) _, global_phase = _convert_to_su2(qml.matrix(target_operation), return_global_phase=True) return ( _multi_controlled_zyz(rot_angles, global_phase, target_wire, control_wires, work_wires) if len(control_wires) > 1 else _single_control_zyz(rot_angles, global_phase, target_wire, control_wires) )
def _ctrl_decomp_bisect_od( u: np.ndarray, target_wire: Wires, control_wires: Wires, ): """Decompose the controlled version of a target single-qubit operation Not backpropagation compatible (as currently implemented). Use only with numpy. This function decomposes a controlled single-qubit target operation using the decomposition defined in section 3.1, Theorem 1 of `Vale et al. (2023) <https://arxiv.org/abs/2302.06377>`_. The target operation's matrix must have a real off-diagonal for this specialized method to work. .. warning:: This method will add a global phase for target operations that do not belong to the SU(2) group. Args: u (np.ndarray): the target operation's matrix target_wire (~.wires.Wires): the target wire of the controlled operation control_wires (~.wires.Wires): the control wires of the operation Returns: list[Operation]: the decomposed operations Raises: ValueError: if ``u`` does not have a real off-diagonal """ ui = np.imag(u) if not np.isclose(ui[1, 0], 0) or not np.isclose(ui[0, 1], 0): raise ValueError(f"Target operation's matrix must have real off-diagonal, but it is {u}") a = _bisect_compute_a(u) mid = (len(control_wires) + 1) // 2 # for odd n, make control_k1 bigger control_k1 = control_wires[:mid] control_k2 = control_wires[mid:] def component(): return [ qml.ctrl(qml.X(target_wire), control=control_k1, work_wires=control_k2), qml.QubitUnitary(a, target_wire), qml.ctrl(qml.X(target_wire), control=control_k2, work_wires=control_k1), qml.adjoint(qml.QubitUnitary(a, target_wire)), ] return component() + component() def _ctrl_decomp_bisect_md( u: np.ndarray, target_wire: Wires, control_wires: Wires, ): """Decompose the controlled version of a target single-qubit operation Not backpropagation compatible (as currently implemented). Use only with numpy. This function decomposes a controlled single-qubit target operation using the decomposition defined in section 3.1, Theorem 2 of `Vale et al. (2023) <https://arxiv.org/abs/2302.06377>`_. The target operation's matrix must have a real main-diagonal for this specialized method to work. .. warning:: This method will add a global phase for target operations that do not belong to the SU(2) group. Args: u (np.ndarray): the target operation's matrix target_wire (~.wires.Wires): the target wire of the controlled operation control_wires (~.wires.Wires): the control wires of the operation Returns: list[Operation]: the decomposed operations Raises: ValueError: if ``u`` does not have a real main-diagonal """ ui = np.imag(u) if not np.isclose(ui[0, 0], 0) or not np.isclose(ui[1, 1], 0): raise ValueError(f"Target operation's matrix must have real main-diagonal, but it is {u}") h_matrix = qml.Hadamard.compute_matrix() mod_u = h_matrix @ u @ h_matrix decomposition = [qml.Hadamard(target_wire)] decomposition += _ctrl_decomp_bisect_od(mod_u, target_wire, control_wires) decomposition.append(qml.Hadamard(target_wire)) return decomposition def _ctrl_decomp_bisect_general( u: np.ndarray, target_wire: Wires, control_wires: Wires, ): """Decompose the controlled version of a target single-qubit operation Not backpropagation compatible (as currently implemented). Use only with numpy. This function decomposes a controlled single-qubit target operation using the decomposition defined in section 3.2 of `Vale et al. (2023) <https://arxiv.org/abs/2302.06377>`_. .. warning:: This method will add a global phase for target operations that do not belong to the SU(2) group. Args: u (np.ndarray): the target operation's matrix target_wire (~.wires.Wires): the target wire of the controlled operation control_wires (~.wires.Wires): the control wires of the operation Returns: list[Operation]: the decomposed operations """ x_matrix = qml.X.compute_matrix() h_matrix = qml.Hadamard.compute_matrix() alternate_h_matrix = x_matrix @ h_matrix @ x_matrix d, q = npl.eig(u) d = np.diag(d) q = _convert_to_real_diagonal(q) b = _bisect_compute_b(q) c1 = b @ alternate_h_matrix c2t = b @ h_matrix mid = (len(control_wires) + 1) // 2 # for odd n, make control_k1 bigger control_k1 = control_wires[:mid] control_k2 = control_wires[mid:] component = [ qml.QubitUnitary(c2t, target_wire), qml.ctrl(qml.X(target_wire), control=control_k2, work_wires=control_k1), qml.adjoint(qml.QubitUnitary(c1, target_wire)), qml.ctrl(qml.X(target_wire), control=control_k1, work_wires=control_k2), ] od_decomp = _ctrl_decomp_bisect_od(d, target_wire, control_wires) # cancel two identical multicontrolled x gates qml.QueuingManager.remove(component[3]) qml.QueuingManager.remove(od_decomp[0]) adjoint_component = [qml.adjoint(copy(op), lazy=False) for op in reversed(component)] return component[0:3] + od_decomp[1:] + adjoint_component
[docs]def ctrl_decomp_bisect( target_operation: Operator, control_wires: Wires, ): """Decompose the controlled version of a target single-qubit operation Not backpropagation compatible (as currently implemented). Use only with numpy. Automatically selects the best algorithm based on the matrix (uses specialized more efficient algorithms if the matrix has a certain form, otherwise falls back to the general algorithm). These algorithms are defined in section 3.1 and 3.2 of `Vale et al. (2023) <https://arxiv.org/abs/2302.06377>`_. .. warning:: This method will add a global phase for target operations that do not belong to the SU(2) group. Args: target_operation (~.operation.Operator): the target operation to decompose control_wires (~.wires.Wires): the control wires of the operation Returns: list[Operation]: the decomposed operations Raises: ValueError: if ``target_operation`` is not a single-qubit operation **Example:** >>> op = qml.T(0) # uses OD algorithm >>> print(qml.draw(ctrl_decomp_bisect, wire_order=(0,1,2,3,4,5), show_matrices=False)(op, (1,2,3,4,5))) 0: ─╭X──U(M0)─╭X──U(M0)†─╭X──U(M0)─╭X──U(M0)†─┤ 1: ─├●────────│──────────├●────────│──────────┤ 2: ─├●────────│──────────├●────────│──────────┤ 3: ─╰●────────│──────────╰●────────│──────────┤ 4: ───────────├●───────────────────├●─────────┤ 5: ───────────╰●───────────────────╰●─────────┤ >>> op = qml.QubitUnitary([[0,1j],[1j,0]], 0) # uses MD algorithm >>> print(qml.draw(ctrl_decomp_bisect, wire_order=(0,1,2,3,4,5), show_matrices=False)(op, (1,2,3,4,5))) 0: ──H─╭X──U(M0)─╭X──U(M0)†─╭X──U(M0)─╭X──U(M0)†──H─┤ 1: ────├●────────│──────────├●────────│─────────────┤ 2: ────├●────────│──────────├●────────│─────────────┤ 3: ────╰●────────│──────────╰●────────│─────────────┤ 4: ──────────────├●───────────────────├●────────────┤ 5: ──────────────╰●───────────────────╰●────────────┤ >>> op = qml.Hadamard(0) # uses general algorithm >>> print(qml.draw(ctrl_decomp_bisect, wire_order=(0,1,2,3,4,5), show_matrices=False)(op, (1,2,3,4,5))) 0: ──U(M0)─╭X──U(M1)†──U(M2)─╭X──U(M2)†─╭X──U(M2)─╭X──U(M2)†─╭X──U(M1)─╭X──U(M0)─┤ 1: ────────│─────────────────│──────────├●────────│──────────├●────────│─────────┤ 2: ────────│─────────────────│──────────├●────────│──────────├●────────│─────────┤ 3: ────────│─────────────────│──────────╰●────────│──────────╰●────────│─────────┤ 4: ────────├●────────────────├●───────────────────├●───────────────────├●────────┤ 5: ────────╰●────────────────╰●───────────────────╰●───────────────────╰●────────┤ """ if len(target_operation.wires) > 1: raise ValueError( "The target operation must be a single-qubit operation, instead " f"got {target_operation}." ) target_matrix = target_operation.matrix() target_wire = target_operation.wires target_matrix = _convert_to_su2(target_matrix) target_matrix_imag = np.imag(target_matrix) if np.isclose(target_matrix_imag[1, 0], 0) and np.isclose(target_matrix_imag[0, 1], 0): # Real off-diagonal specialized algorithm - 16n+O(1) CNOTs return _ctrl_decomp_bisect_od(target_matrix, target_wire, control_wires) if np.isclose(target_matrix_imag[0, 0], 0) and np.isclose(target_matrix_imag[1, 1], 0): # Real main-diagonal specialized algorithm - 16n+O(1) CNOTs return _ctrl_decomp_bisect_md(target_matrix, target_wire, control_wires) # General algorithm - 20n+O(1) CNOTs return _ctrl_decomp_bisect_general(target_matrix, target_wire, control_wires)
def decompose_mcx(control_wires, target_wire, work_wires): """Decomposes the multi-controlled PauliX gate using decompositions from `Barenco et al. (1995) <https://arxiv.org/abs/quant-ph/9503016>`_""" num_work_wires_needed = len(control_wires) - 2 if len(control_wires) == 1: return [qml.CNOT(wires=control_wires + Wires(target_wire))] if len(control_wires) == 2: return qml.Toffoli.compute_decomposition(wires=control_wires + Wires(target_wire)) if len(work_wires) >= num_work_wires_needed: # Lemma 7.2 return _decompose_mcx_with_many_workers(control_wires, target_wire, work_wires) if len(work_wires) >= 1: # Lemma 7.3 return _decompose_mcx_with_one_worker(control_wires, target_wire, work_wires[0]) # Lemma 7.5 with qml.QueuingManager.stop_recording(): op = qml.X(target_wire) return _decompose_multicontrolled_unitary(op, control_wires) def _decompose_multicontrolled_unitary(op, control_wires): """Decomposes general multi controlled unitary with no work wires Follows approach from Lemma 7.5 combined with 7.3 and 7.2 of https://arxiv.org/abs/quant-ph/9503016. We are assuming this decomposition is used only in the general cases """ if not op.has_matrix or len(op.wires) != 1: raise ValueError( "The target operation must be a single-qubit operation with a matrix representation" ) target_wire = op.wires if len(control_wires) == 0: return [op] if len(control_wires) == 1: return ctrl_decomp_zyz(op, control_wires) if _is_single_qubit_special_unitary(op): return ctrl_decomp_bisect(op, control_wires) # use recursive decomposition of general gate return _decompose_recursive(op, 1.0, control_wires, target_wire, Wires([])) def _decompose_recursive(op, power, control_wires, target_wire, work_wires): """Decompose multicontrolled operator recursively using lemma 7.5 Number of gates in decomposition are: O(len(control_wires)^2) """ if len(control_wires) == 1: with qml.QueuingManager.stop_recording(): powered_op = qml.pow(op, power, lazy=True) return ctrl_decomp_zyz(powered_op, control_wires) with qml.QueuingManager.stop_recording(): cnots = decompose_mcx( control_wires=control_wires[:-1], target_wire=control_wires[-1], work_wires=work_wires + target_wire, ) with qml.QueuingManager.stop_recording(): powered_op = qml.pow(op, 0.5 * power, lazy=True) powered_op_adj = qml.adjoint(powered_op, lazy=True) if qml.QueuingManager.recording(): decomposition = [ *ctrl_decomp_zyz(powered_op, control_wires[-1]), *(qml.apply(o) for o in cnots), *ctrl_decomp_zyz(powered_op_adj, control_wires[-1]), *(qml.apply(o) for o in cnots), *_decompose_recursive( op, 0.5 * power, control_wires[:-1], target_wire, control_wires[-1] + work_wires ), ] else: decomposition = [ *ctrl_decomp_zyz(powered_op, control_wires[-1]), *cnots, *ctrl_decomp_zyz(powered_op_adj, control_wires[-1]), *cnots, *_decompose_recursive( op, 0.5 * power, control_wires[:-1], target_wire, control_wires[-1] + work_wires ), ] return decomposition def _decompose_mcx_with_many_workers(control_wires, target_wire, work_wires): """Decomposes the multi-controlled PauliX gate using the approach in Lemma 7.2 of https://arxiv.org/abs/quant-ph/9503016, which requires a suitably large register of work wires""" num_work_wires_needed = len(control_wires) - 2 work_wires = work_wires[:num_work_wires_needed] work_wires_reversed = list(reversed(work_wires)) control_wires_reversed = list(reversed(control_wires)) gates = [] for i in range(len(work_wires)): ctrl1 = control_wires_reversed[i] ctrl2 = work_wires_reversed[i] t = target_wire if i == 0 else work_wires_reversed[i - 1] gates.append(qml.Toffoli(wires=[ctrl1, ctrl2, t])) gates.append(qml.Toffoli(wires=[*control_wires[:2], work_wires[0]])) for i in reversed(range(len(work_wires))): ctrl1 = control_wires_reversed[i] ctrl2 = work_wires_reversed[i] t = target_wire if i == 0 else work_wires_reversed[i - 1] gates.append(qml.Toffoli(wires=[ctrl1, ctrl2, t])) for i in range(len(work_wires) - 1): ctrl1 = control_wires_reversed[i + 1] ctrl2 = work_wires_reversed[i + 1] t = work_wires_reversed[i] gates.append(qml.Toffoli(wires=[ctrl1, ctrl2, t])) gates.append(qml.Toffoli(wires=[*control_wires[:2], work_wires[0]])) for i in reversed(range(len(work_wires) - 1)): ctrl1 = control_wires_reversed[i + 1] ctrl2 = work_wires_reversed[i + 1] t = work_wires_reversed[i] gates.append(qml.Toffoli(wires=[ctrl1, ctrl2, t])) return gates def _decompose_mcx_with_one_worker(control_wires, target_wire, work_wire): """Decomposes the multi-controlled PauliX gate using the approach in Lemma 7.3 of https://arxiv.org/abs/quant-ph/9503016, which requires a single work wire""" tot_wires = len(control_wires) + 2 partition = int(np.ceil(tot_wires / 2)) first_part = control_wires[:partition] second_part = control_wires[partition:] gates = [ qml.ctrl(qml.X(work_wire), control=first_part, work_wires=second_part + target_wire), qml.ctrl(qml.X(target_wire), control=second_part + work_wire, work_wires=first_part), qml.ctrl(qml.X(work_wire), control=first_part, work_wires=second_part + target_wire), qml.ctrl(qml.X(target_wire), control=second_part + work_wire, work_wires=first_part), ] return gates