Source code for pennylane.ops.qutrit.state_preparation
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule contains the discrete-variable quantum operations concerned
with preparing a certain state on the qutrit device.
"""
# pylint:disable=abstract-method,arguments-differ,protected-access,no-member
import numpy as np
from pennylane import math
from pennylane.operation import AnyWires, StatePrepBase
from pennylane.templates.state_preparations import QutritBasisStatePreparation
from pennylane.wires import WireError, Wires
state_prep_ops = {"QutritBasisState"}
[docs]class QutritBasisState(StatePrepBase):
r"""QutritBasisState(n, wires)
Prepares a single computational basis state for a qutrit system.
**Details:**
* Number of wires: Any (the operation can act on any number of wires)
* Number of parameters: 1
* Gradient recipe: None (integer parameters not supported)
.. note::
If the ``QutritBasisState`` operation is not supported natively on the
target device, PennyLane will attempt to decompose the operation
into :class:`~.TShift` operations.
.. note::
When called in the middle of a circuit, the action of the operation is defined
as :math:`U|0\rangle = |\psi\rangle`
Args:
n (array): prepares the basis state :math:`\ket{n}`, where ``n`` is an
array of integers from the set :math:`\{0, 1, 2\}`, i.e.,
if ``n = np.array([0, 1, 0])``, prepares the state :math:`|010\rangle`.
wires (Sequence[int] or int): the wire(s) the operation acts on
**Example**
>>> dev = qml.device('default.qutrit', wires=2)
>>> @qml.qnode(dev)
... def example_circuit():
... qml.QutritBasisState(np.array([2, 2]), wires=range(2))
... return qml.state()
>>> print(example_circuit())
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
"""
num_wires = AnyWires
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (1,)
"""int: Number of dimensions per trainable parameter of the operator."""
[docs] @staticmethod
def compute_decomposition(n, wires):
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.BasisState.decomposition`.
Args:
n (array): prepares the basis state :math:`\ket{n}`, where ``n`` is an
array of integers from the set :math:`\{0, 1, 2\}`
wires (Iterable, Wires): the wire(s) the operation acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.QutritBasisState.compute_decomposition([1,0], wires=(0,1))
[QutritBasisStatePreparation(array([1, 0]), wires=[0, 1])]
"""
return [QutritBasisStatePreparation(n, wires)]
[docs] def state_vector(self, wire_order=None):
"""Returns a statevector of shape ``(3,) * num_wires``."""
prep_vals = self.parameters[0]
if any(i not in [0, 1, 2] for i in prep_vals):
raise ValueError("QutritBasisState parameter must consist of 0, 1 or 2 integers.")
if (num_wires := len(self.wires)) != len(prep_vals):
raise ValueError("QutritBasisState parameter and wires must be of equal length.")
if wire_order is None:
indices = prep_vals
else:
if not Wires(wire_order).contains_wires(self.wires):
raise WireError("Custom wire_order must contain all QutritBasisState wires")
num_wires = len(wire_order)
indices = [0] * num_wires
for base_wire_label, value in zip(self.wires, prep_vals):
indices[wire_order.index(base_wire_label)] = value
ket = np.zeros((3,) * num_wires)
ket[tuple(indices)] = 1
return math.convert_like(ket, prep_vals)
_modules/pennylane/ops/qutrit/state_preparation
Download Python script
Download Notebook
View on GitHub