Source code for pennylane.optimize.gradient_descent
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gradient descent optimizer"""
from pennylane._grad import grad as get_gradient
[docs]class GradientDescentOptimizer:
r"""Basic gradient-descent optimizer.
Base class for other gradient-descent-based optimizers.
A step of the gradient descent optimizer computes the new values via the rule
.. math::
x^{(t+1)} = x^{(t)} - \eta \nabla f(x^{(t)}).
where :math:`\eta` is a user-defined hyperparameter corresponding to step size.
Args:
stepsize (float): the user-defined hyperparameter :math:`\eta`
.. note::
When using ``torch``, ``tensorflow`` or ``jax`` interfaces, refer to :doc:`Gradients and training </introduction/interfaces>` for suitable optimizers.
"""
def __init__(self, stepsize=0.01):
self.stepsize = stepsize
[docs] def step_and_cost(self, objective_fn, *args, grad_fn=None, **kwargs):
"""Update trainable arguments with one step of the optimizer and return the corresponding
objective function value prior to the step.
Args:
objective_fn (function): the objective function for optimization
*args : variable length argument list for objective function
grad_fn (function): optional gradient function of the
objective function with respect to the variables ``*args``.
If ``None``, the gradient function is computed automatically.
Must return a ``tuple[array]`` with the same number of elements as ``*args``.
Each array of the tuple should have the same shape as the corresponding argument.
**kwargs : variable length of keyword arguments for the objective function
Returns:
tuple[list [array], float]: the new variable values :math:`x^{(t+1)}` and the objective
function output prior to the step.
If single arg is provided, list [array] is replaced by array.
"""
g, forward = self.compute_grad(objective_fn, args, kwargs, grad_fn=grad_fn)
new_args = self.apply_grad(g, args)
if forward is None:
forward = objective_fn(*args, **kwargs)
# unwrap from list if one argument, cleaner return
if len(new_args) == 1:
return new_args[0], forward
return new_args, forward
[docs] def step(self, objective_fn, *args, grad_fn=None, **kwargs):
"""Update trainable arguments with one step of the optimizer.
Args:
objective_fn (function): the objective function for optimization
*args : Variable length argument list for objective function
grad_fn (function): optional gradient function of the
objective function with respect to the variables ``x``.
If ``None``, the gradient function is computed automatically.
Must return a ``tuple[array]`` with the same number of elements as ``*args``.
Each array of the tuple should have the same shape as the corresponding argument.
**kwargs : variable length of keyword arguments for the objective function
Returns:
list [array]: the new variable values :math:`x^{(t+1)}`.
If single arg is provided, list [array] is replaced by array.
"""
g, _ = self.compute_grad(objective_fn, args, kwargs, grad_fn=grad_fn)
new_args = self.apply_grad(g, args)
# unwrap from list if one argument, cleaner return
if len(new_args) == 1:
return new_args[0]
return new_args
[docs] @staticmethod
def compute_grad(objective_fn, args, kwargs, grad_fn=None):
r"""Compute the gradient of the objective function at the given point and return it along with
the objective function forward pass (if available).
Args:
objective_fn (function): the objective function for optimization
args (tuple): tuple of NumPy arrays containing the current parameters for the
objection function
kwargs (dict): keyword arguments for the objective function
grad_fn (function): optional gradient function of the objective function with respect to
the variables ``args``. If ``None``, the gradient function is computed automatically.
Must return the same shape of tuple [array] as the autograd derivative.
Returns:
tuple (array): NumPy array containing the gradient :math:`\nabla f(x^{(t)})` and the
objective function output. If ``grad_fn`` is provided, the objective function
will not be evaluated and instead ``None`` will be returned.
"""
g = get_gradient(objective_fn) if grad_fn is None else grad_fn
grad = g(*args, **kwargs)
forward = getattr(g, "forward", None)
num_trainable_args = sum(getattr(arg, "requires_grad", False) for arg in args)
grad = (grad,) if num_trainable_args == 1 else grad
return grad, forward
[docs] def apply_grad(self, grad, args):
r"""Update the variables to take a single optimization step. Flattens and unflattens
the inputs to maintain nested iterables as the parameters of the optimization.
Args:
grad (tuple [array]): the gradient of the objective
function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})`
args (tuple): the current value of the variables :math:`x^{(t)}`
Returns:
list [array]: the new values :math:`x^{(t+1)}`
"""
args_new = list(args)
trained_index = 0
for index, arg in enumerate(args):
if getattr(arg, "requires_grad", False):
args_new[index] = arg - self.stepsize * grad[trained_index]
trained_index += 1
return args_new
_modules/pennylane/optimize/gradient_descent
Download Python script
Download Notebook
View on GitHub