Source code for pennylane.optimize.gradient_descent

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gradient descent optimizer"""

from pennylane._grad import grad as get_gradient


[docs]class GradientDescentOptimizer: r"""Basic gradient-descent optimizer. Base class for other gradient-descent-based optimizers. A step of the gradient descent optimizer computes the new values via the rule .. math:: x^{(t+1)} = x^{(t)} - \eta \nabla f(x^{(t)}). where :math:`\eta` is a user-defined hyperparameter corresponding to step size. Args: stepsize (float): the user-defined hyperparameter :math:`\eta` .. note:: When using ``torch``, ``tensorflow`` or ``jax`` interfaces, refer to :doc:`Gradients and training </introduction/interfaces>` for suitable optimizers. """ def __init__(self, stepsize=0.01): self.stepsize = stepsize
[docs] def step_and_cost(self, objective_fn, *args, grad_fn=None, **kwargs): """Update trainable arguments with one step of the optimizer and return the corresponding objective function value prior to the step. Args: objective_fn (function): the objective function for optimization *args : variable length argument list for objective function grad_fn (function): optional gradient function of the objective function with respect to the variables ``*args``. If ``None``, the gradient function is computed automatically. Must return a ``tuple[array]`` with the same number of elements as ``*args``. Each array of the tuple should have the same shape as the corresponding argument. **kwargs : variable length of keyword arguments for the objective function Returns: tuple[list [array], float]: the new variable values :math:`x^{(t+1)}` and the objective function output prior to the step. If single arg is provided, list [array] is replaced by array. """ g, forward = self.compute_grad(objective_fn, args, kwargs, grad_fn=grad_fn) new_args = self.apply_grad(g, args) if forward is None: forward = objective_fn(*args, **kwargs) # unwrap from list if one argument, cleaner return if len(new_args) == 1: return new_args[0], forward return new_args, forward
[docs] def step(self, objective_fn, *args, grad_fn=None, **kwargs): """Update trainable arguments with one step of the optimizer. Args: objective_fn (function): the objective function for optimization *args : Variable length argument list for objective function grad_fn (function): optional gradient function of the objective function with respect to the variables ``x``. If ``None``, the gradient function is computed automatically. Must return a ``tuple[array]`` with the same number of elements as ``*args``. Each array of the tuple should have the same shape as the corresponding argument. **kwargs : variable length of keyword arguments for the objective function Returns: list [array]: the new variable values :math:`x^{(t+1)}`. If single arg is provided, list [array] is replaced by array. """ g, _ = self.compute_grad(objective_fn, args, kwargs, grad_fn=grad_fn) new_args = self.apply_grad(g, args) # unwrap from list if one argument, cleaner return if len(new_args) == 1: return new_args[0] return new_args
[docs] @staticmethod def compute_grad(objective_fn, args, kwargs, grad_fn=None): r"""Compute the gradient of the objective function at the given point and return it along with the objective function forward pass (if available). Args: objective_fn (function): the objective function for optimization args (tuple): tuple of NumPy arrays containing the current parameters for the objection function kwargs (dict): keyword arguments for the objective function grad_fn (function): optional gradient function of the objective function with respect to the variables ``args``. If ``None``, the gradient function is computed automatically. Must return the same shape of tuple [array] as the autograd derivative. Returns: tuple (array): NumPy array containing the gradient :math:`\nabla f(x^{(t)})` and the objective function output. If ``grad_fn`` is provided, the objective function will not be evaluated and instead ``None`` will be returned. """ g = get_gradient(objective_fn) if grad_fn is None else grad_fn grad = g(*args, **kwargs) forward = getattr(g, "forward", None) num_trainable_args = sum(getattr(arg, "requires_grad", False) for arg in args) grad = (grad,) if num_trainable_args == 1 else grad return grad, forward
[docs] def apply_grad(self, grad, args): r"""Update the variables to take a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (tuple [array]): the gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})` args (tuple): the current value of the variables :math:`x^{(t)}` Returns: list [array]: the new values :math:`x^{(t+1)}` """ args_new = list(args) trained_index = 0 for index, arg in enumerate(args): if getattr(arg, "requires_grad", False): args_new[index] = arg - self.stepsize * grad[trained_index] trained_index += 1 return args_new