Source code for pennylane.optimize.momentum_qng

# Copyright 2024 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantum natural gradient optimizer with momentum"""

# pylint: disable=too-many-branches
# pylint: disable=too-many-arguments
from pennylane import numpy as pnp

from .qng import QNGOptimizer, _flatten_np, _unflatten_np


[docs]class MomentumQNGOptimizer(QNGOptimizer): r"""A generalization of the Quantum Natural Gradient (QNG) optimizer by considering a discrete-time Langevin equation with QNG force. For details of the theory and derivation of Momentum-QNG, please see: Oleksandr Borysenko, Mykhailo Bratchenko, Ilya Lukin, Mykola Luhanko, Ihor Omelchenko, Andrii Sotnikov and Alessandro Lomi. "Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm" `arXiv:2409.01978 <https://arxiv.org/abs/2409.01978>`__ We are grateful to David Wierichs for his generous help with the multi-argument variant of the ``MomentumQNGOptimizer`` class. ``MomentumQNGOptimizer`` is a subclass of ``QNGOptimizer`` that requires one additional hyperparameter (the momentum coefficient) :math:`0 \leq \rho < 1`, the default value being :math:`\rho=0.9`. For :math:`\rho=0` Momentum-QNG reduces to the basic QNG. In this way, the parameter update rule in Momentum-QNG reads: .. math:: x^{(t+1)} = x^{(t)} + \rho (x^{(t)} - x^{(t-1)}) - \eta g(f(x^{(t)}))^{-1} \nabla f(x^{(t)}), where :math:`\eta` is a stepsize (learning rate) value, :math:`g(f(x^{(t)}))^{-1}` is the pseudo-inverse of the Fubini-Study metric tensor and :math:`f(x^{(t)}) = \langle 0 | U(x^{(t)})^\dagger \hat{B} U(x^{(t)}) | 0 \rangle` is an expectation value of some observable measured on the variational quantum circuit :math:`U(x^{(t)})`. **Examples:** Consider an objective function realized as a :class:`~.QNode` that returns the expectation value of a Hamiltonian. >>> dev = qml.device("default.qubit", wires=(0, 1, "aux")) >>> @qml.qnode(dev) ... def circuit(params): ... qml.RX(params[0], wires=0) ... qml.RY(params[1], wires=0) ... return qml.expval(qml.X(0)) Once constructed, the cost function can be passed directly to the optimizer's :meth:`~.step` function. In addition to the standard learning rate, the ``MomentumQNGOptimizer`` takes a ``momentum`` parameter: >>> eta = 0.01 >>> rho = 0.93 >>> init_params = qml.numpy.array([0.5, 0.23], requires_grad=True) >>> opt = qml.MomentumQNGOptimizer(stepsize=eta, momentum=rho) >>> theta_new = opt.step(circuit, init_params) >>> theta_new tensor([0.50437193, 0.18562052], requires_grad=True) An alternative function to calculate the metric tensor of the QNode can be provided to ``step`` via the ``metric_tensor_fn`` keyword argument, see :class:`~.pennylane.QNGOptimizer` for details. .. seealso:: For details on quantum natural gradient, see :class:`~.pennylane.QNGOptimizer`. See :class:`~.pennylane.MomentumOptimizer` for a first-order optimizer with momentum. Also see the examples from the reference above, benchmarking the Momentum-QNG optimizer against the basic QNG, Momentum and Adam: - `QAOA <https://github.com/borbysh/Momentum-QNG/blob/main/QAOA_depth4.ipynb>`__ - `VQE <https://github.com/borbysh/Momentum-QNG/blob/main/portfolio_optimization.ipynb>`__ Keyword Args: stepsize=0.01 (float): the user-defined hyperparameter :math:`\eta` momentum=0.9 (float): the user-defined hyperparameter :math:`\rho` approx (str): Which approximation of the metric tensor to compute. - If ``None``, the full metric tensor is computed - If ``"block-diag"``, the block-diagonal approximation is computed, reducing the number of evaluated circuits significantly. - If ``"diag"``, only the diagonal approximation is computed, slightly reducing the classical overhead but not the quantum resources (compared to ``"block-diag"``). lam=0 (float): metric tensor regularization :math:`G_{ij}+\lambda I` to be applied at each optimization step """ def __init__(self, stepsize=0.01, momentum=0.9, approx="block-diag", lam=0): super().__init__(stepsize, approx, lam) self.momentum = momentum self.accumulation = None
[docs] def apply_grad(self, grad, args): r"""Update the parameter array :math:`x` for a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (array): The gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})` args (array): the current value of the variables :math:`x^{(t)}` Returns: array: the new values :math:`x^{(t+1)}` """ args_new = list(args) if self.accumulation is None: self.accumulation = [pnp.zeros_like(g) for g in grad] metric_tensor = ( self.metric_tensor if isinstance(self.metric_tensor, tuple) else (self.metric_tensor,) ) trained_index = 0 for index, arg in enumerate(args): if getattr(arg, "requires_grad", False): grad_flat = pnp.array(list(_flatten_np(grad[trained_index]))) # self.metric_tensor has already been reshaped to 2D, matching flat gradient. qng_update = pnp.linalg.pinv(metric_tensor[trained_index]) @ grad_flat self.accumulation[trained_index] *= self.momentum self.accumulation[trained_index] += self.stepsize * _unflatten_np( qng_update, grad[trained_index] ) args_new[index] = arg - self.accumulation[trained_index] trained_index += 1 return tuple(args_new)