# Copyright 2018-2021 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Root mean square propagation optimizer"""fromnumpyimportsqrtfrom.adagradimportAdagradOptimizer
[docs]classRMSPropOptimizer(AdagradOptimizer):r"""Root mean squared propagation optimizer. The root mean square propagation optimizer is a modified :class:`Adagrad optimizer <pennylane.optimize.AdagradOptimizer>`, with a decay of learning rate adaptation. Extensions of the Adagrad optimization method generally start the sum :math:`a` over past gradients in the denominator of the learning rate at a finite :math:`t'` with :math:`0 < t' < t`, or decay past gradients to avoid an ever-decreasing learning rate. Root Mean Square propagation is such an adaptation, where .. math:: a_i^{(t+1)} = \gamma a_i^{(t)} + (1-\gamma) (\partial_{x_i} f(x^{(t)}))^2. Args: stepsize (float): the user-defined hyperparameter :math:`\eta` used in the Adagrad optimization decay (float): the learning rate decay :math:`\gamma` eps (float): offset :math:`\epsilon` added for numerical stability (see :class:`Adagrad <pennylane.optimize.AdagradOptimizer>`) """def__init__(self,stepsize=0.01,decay=0.9,eps=1e-8):super().__init__(stepsize)self.decay=decayself.eps=eps
[docs]defapply_grad(self,grad,args):r"""Update the variables args to take a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (tuple [array]): the gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})`. args (tuple): the current value of the variables :math:`x^{(t)}`. Returns: list [array]: the new values :math:`x^{(t+1)}` """args_new=list(args)ifself.accumulationisNone:self.accumulation=[0.0]*len(args)trained_index=0forindex,arginenumerate(args):ifgetattr(arg,"requires_grad",False):self._update_accumulation(index,grad[trained_index])args_new[index]=(arg-(self.stepsize/sqrt(self.accumulation[index]+self.eps))*grad[trained_index])trained_index+=1returnargs_new
def_update_accumulation(self,index,grad):r"""Update the accumulation with the gradient. Args: index (int): index of argument to update. grad (ndarray): gradient at the index. """self.accumulation[index]=(self.decay*self.accumulation[index]+(1-self.decay)*grad**2)