# Source code for pennylane.optimize.rotoselect

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# Unless required by applicable law or agreed to in writing, software
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import numpy as np

import pennylane as qml
from pennylane.utils import _flatten, unflatten

[docs]class RotoselectOptimizer:

The Rotoselect optimizer minimizes an objective function with respect to the rotation gates and
parameters of a quantum circuit without the need for calculating the gradient of the function.
The algorithm works by updating the parameters :math:\theta = \theta_1, \dots, \theta_D
and rotation gate choices :math:R = R_1,\dots,R_D one at a time according to a closed-form
expression for the optimal value of the :math:d^{th} parameter :math:\theta^*_d when the
other parameters and gate choices are fixed:

.. math:: \theta^*_d = \underset{\theta_d}{\text{argmin}}\left<H\right>_{\theta_d}
= -\frac{\pi}{2} - \text{arctan2}\left(2\left<H\right>_{\theta_d=0}
- \left<H\right>_{\theta_d=\pi/2} - \left<H\right>_{\theta_d=-\pi/2},
\left<H\right>_{\theta_d=\pi/2} - \left<H\right>_{\theta_d=-\pi/2}\right),

where :math:\left<H\right>_{\theta_d} is the expectation value of the objective function
optimized over the parameter :math:\theta_d. :math:\text{arctan2}(x, y) computes the
element-wise arc tangent of :math:x/y choosing the quadrant correctly, avoiding, in
particular, division-by-zero when :math:y = 0.

Which parameters and gates that should be optimized over is decided in the user-defined cost
function, where :math:R is a list of parametrized rotation gates in a quantum circuit, along
with their respective parameters :math:\theta for the circuit and its gates. Note that the
number of generators should match the number of parameters.

The algorithm is described in further detail in
Ostaszewski et al. (2021) <https://doi.org/10.22331/q-2021-01-28-391>_.

Args:
possible_generators (list[~.Operation]): List containing the possible
pennylane.ops.qubit operators that are allowed in the circuit.
Default is the set of Pauli rotations :math:\{R_x, R_y, R_z\}.

**Example:**

Initialize the Rotoselect optimizer, set the initial values of  the weights x,
choose the initial generators, and set the number of steps to optimize over.

>>> opt = qml.optimize.RotoselectOptimizer()
>>> x = [0.3, 0.7]
>>> generators = [qml.RX, qml.RY]
>>> n_steps = 10

Set up the PennyLane circuit using the default.qubit simulator device.

>>> dev = qml.device("default.qubit", shots=None, wires=2)
>>> @qml.qnode(dev)
... def circuit(params, generators=None):  # generators will be passed as a keyword arg
...     generators(params, wires=0)
...     generators(params, wires=1)
...     qml.CNOT(wires=[0, 1])
...     return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliX(1))

Define a cost function based on the above circuit.

>>> def cost(x, generators):
...     Z_1, X_2 = circuit(x, generators=generators)
...     return 0.2 * Z_1 + 0.5 * X_2

Run the optimization step-by-step for n_steps steps.

>>> cost_rotosel = []
>>> for _ in range(n_steps):
...     cost_rotosel.append(cost(x, generators))
...     x, generators = opt.step(cost, x, generators)

The optimized values for x should now be stored in x together with the optimal gates for
the circuit, while steps-vs-cost can be seen by plotting cost_rotosel.
"""
# pylint: disable=too-few-public-methods

def __init__(self, possible_generators=None):
self.possible_generators = possible_generators or [qml.RX, qml.RY, qml.RZ]

[docs]    def step_and_cost(self, objective_fn, x, generators, **kwargs):
"""Update trainable arguments with one step of the optimizer and return the corresponding
objective function value prior to the step.

Args:
objective_fn (function): The objective function for optimization. It must have the
signature objective_fn(x, generators=None) with a sequence of the values x
and a list of the gates generators as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial pennylane.ops.qubit
operators to be used in the circuit and optimized over
**kwargs : variable length of keyword arguments for the objective function.

Returns:
tuple: the new variable values :math:x^{(t+1)}, the new generators, and the objective
function output prior to the step
"""
x_new, generators = self.step(objective_fn, x, generators, **kwargs)

return x_new, generators, objective_fn(x, generators, **kwargs)

[docs]    def step(self, objective_fn, x, generators, **kwargs):
r"""Update trainable arguments with one step of the optimizer.

Args:
objective_fn (function): The objective function for optimization. It must have the
signature objective_fn(x, generators=None) with a sequence of the values x
and a list of the gates generators as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial pennylane.ops.qubit
operators to be used in the circuit and optimized over
**kwargs : variable length of keyword arguments for the objective function.

Returns:
array: The new variable values :math:x^{(t+1)} as well as the new generators.
"""
x_flat = np.fromiter(_flatten(x), dtype=float)
# wrap the objective function so that it accepts the flattened parameter array
# pylint:disable=unnecessary-lambda-assignment
objective_fn_flat = lambda x_flat, gen: objective_fn(
unflatten(x_flat, x), generators=gen, **kwargs
)

try:
assert len(x_flat) == len(generators)
except AssertionError as e:
raise ValueError(
f"Number of parameters {x} must be equal to the number of generators."
) from e

for d, _ in enumerate(x_flat):
x_flat[d], generators[d] = self._find_optimal_generators(
objective_fn_flat, x_flat, generators, d
)

return unflatten(x_flat, x), generators

def _find_optimal_generators(self, objective_fn, x, generators, d):
r"""Optimizer for the generators.

Optimizes for the best generator at position d.

Args:
objective_fn (function): The objective function for optimization. It must have the
signature objective_fn(x, generators=None) with a sequence of the values x
and a list of the gates generators as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial pennylane.ops.qubit
operators to be used in the circuit and optimized over
d (int): the position in the input sequence x containing the value to be optimized

Returns:
tuple: tuple containing the parameter value and generator that, at position d in
x and generators, optimizes the objective function
"""
params_opt_d = x[d]
generators_opt_d = generators[d]
params_opt_cost = objective_fn(x, generators)

for generator in self.possible_generators:
generators[d] = generator

x = self._rotosolve(objective_fn, x, generators, d)
params_cost = objective_fn(x, generators)

# save the best paramter and generator for position d
if params_cost <= params_opt_cost:
params_opt_d = x[d]
params_opt_cost = params_cost
generators_opt_d = generator
return params_opt_d, generators_opt_d

@staticmethod
def _rotosolve(objective_fn, x, generators, d):
r"""The rotosolve step for one parameter and one set of generators.

Updates the parameter :math:\theta_d based on Equation 1 in
Ostaszewski et al. (2021) <https://doi.org/10.22331/q-2021-01-28-391>_.

Args:
objective_fn (function): The objective function for optimization. It must have the
signature objective_fn(x, generators=None) with a sequence of the values x
and a list of the gates generators as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized overs or a single float with the initial value
generators (list[~.Operation]): list containing the initial pennylane.ops.qubit
operators to be used in the circuit and optimized over
d (int): the position in the input sequence x containing the value to be optimized

Returns:
array: the input sequence x with the value at position d optimized
"""

# helper function for x[d] = theta
def insert(x, d, theta):
x[d] = theta
return x

H_0 = float(objective_fn(insert(x, d, 0), generators))
H_p = float(objective_fn(insert(x, d, np.pi / 2), generators))
H_m = float(objective_fn(insert(x, d, -np.pi / 2), generators))

a = np.arctan2(2 * H_0 - H_p - H_m, H_p - H_m)

x[d] = -np.pi / 2 - a

if x[d] <= -np.pi:
x[d] += 2 * np.pi
return x


Using PennyLane

Development

API

Internals