Source code for pennylane.optimize.rotoselect
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rotoselect gradient free optimizer"""
import numpy as np
import pennylane as qml
from .qng import _flatten_np, _unflatten_np
[docs]class RotoselectOptimizer:
r"""Rotoselect gradient-free optimizer.
The Rotoselect optimizer minimizes an objective function with respect to the rotation gates and
parameters of a quantum circuit without the need for calculating the gradient of the function.
The algorithm works by updating the parameters :math:`\theta = \theta_1, \dots, \theta_D`
and rotation gate choices :math:`R = R_1,\dots,R_D` one at a time according to a closed-form
expression for the optimal value of the :math:`d^{th}` parameter :math:`\theta^*_d` when the
other parameters and gate choices are fixed:
.. math:: \theta^*_d = \underset{\theta_d}{\text{argmin}}\left<H\right>_{\theta_d}
= -\frac{\pi}{2} - \text{arctan2}\left(2\left<H\right>_{\theta_d=0}
- \left<H\right>_{\theta_d=\pi/2} - \left<H\right>_{\theta_d=-\pi/2},
\left<H\right>_{\theta_d=\pi/2} - \left<H\right>_{\theta_d=-\pi/2}\right),
where :math:`\left<H\right>_{\theta_d}` is the expectation value of the objective function
optimized over the parameter :math:`\theta_d`. :math:`\text{arctan2}(x, y)` computes the
element-wise arc tangent of :math:`x/y` choosing the quadrant correctly, avoiding, in
particular, division-by-zero when :math:`y = 0`.
Which parameters and gates that should be optimized over is decided in the user-defined cost
function, where :math:`R` is a list of parametrized rotation gates in a quantum circuit, along
with their respective parameters :math:`\theta` for the circuit and its gates. Note that the
number of generators should match the number of parameters.
The algorithm is described in further detail in
`Ostaszewski et al. (2021) <https://doi.org/10.22331/q-2021-01-28-391>`_.
Args:
possible_generators (list[~.Operation]): List containing the possible
``pennylane.ops.qubit`` operators that are allowed in the circuit.
Default is the set of Pauli rotations :math:`\{R_x, R_y, R_z\}`.
**Example:**
Initialize the Rotoselect optimizer, set the initial values of the weights ``x``,
choose the initial generators, and set the number of steps to optimize over.
>>> opt = qml.optimize.RotoselectOptimizer()
>>> x = [0.3, 0.7]
>>> generators = [qml.RX, qml.RY]
>>> n_steps = 10
Set up the PennyLane circuit using the ``default.qubit`` simulator device.
>>> dev = qml.device("default.qubit", shots=None, wires=2)
>>> @qml.qnode(dev)
... def circuit(params, generators=None): # generators will be passed as a keyword arg
... generators[0](params[0], wires=0)
... generators[1](params[1], wires=1)
... qml.CNOT(wires=[0, 1])
... return qml.expval(qml.Z(0)), qml.expval(qml.X(1))
Define a cost function based on the above circuit.
>>> def cost(x, generators):
... Z_1, X_2 = circuit(x, generators=generators)
... return 0.2 * Z_1 + 0.5 * X_2
Run the optimization step-by-step for ``n_steps`` steps.
>>> cost_rotosel = []
>>> for _ in range(n_steps):
... cost_rotosel.append(cost(x, generators))
... x, generators = opt.step(cost, x, generators)
The optimized values for x should now be stored in ``x`` together with the optimal gates for
the circuit, while steps-vs-cost can be seen by plotting ``cost_rotosel``.
"""
# pylint: disable=too-few-public-methods
def __init__(self, possible_generators=None):
self.possible_generators = possible_generators or [qml.RX, qml.RY, qml.RZ]
[docs] def step_and_cost(self, objective_fn, x, generators, **kwargs):
"""Update trainable arguments with one step of the optimizer and return the corresponding
objective function value prior to the step.
Args:
objective_fn (function): The objective function for optimization. It must have the
signature ``objective_fn(x, generators=None)`` with a sequence of the values ``x``
and a list of the gates ``generators`` as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial ``pennylane.ops.qubit``
operators to be used in the circuit and optimized over
**kwargs : variable length of keyword arguments for the objective function.
Returns:
tuple: the new variable values :math:`x^{(t+1)}`, the new generators, and the objective
function output prior to the step
"""
x_new, generators = self.step(objective_fn, x, generators, **kwargs)
return x_new, generators, objective_fn(x, generators, **kwargs)
[docs] def step(self, objective_fn, x, generators, **kwargs):
r"""Update trainable arguments with one step of the optimizer.
Args:
objective_fn (function): The objective function for optimization. It must have the
signature ``objective_fn(x, generators=None)`` with a sequence of the values ``x``
and a list of the gates ``generators`` as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial ``pennylane.ops.qubit``
operators to be used in the circuit and optimized over
**kwargs : variable length of keyword arguments for the objective function.
Returns:
array: The new variable values :math:`x^{(t+1)}` as well as the new generators.
"""
x_flat = np.fromiter(_flatten_np(x), dtype=float)
# wrap the objective function so that it accepts the flattened parameter array
# pylint:disable=unnecessary-lambda-assignment
objective_fn_flat = lambda x_flat, gen: objective_fn(
_unflatten_np(x_flat, x), generators=gen, **kwargs
)
try:
assert len(x_flat) == len(generators)
except AssertionError as e:
raise ValueError(
f"Number of parameters {x} must be equal to the number of generators."
) from e
for d, _ in enumerate(x_flat):
x_flat[d], generators[d] = self._find_optimal_generators(
objective_fn_flat, x_flat, generators, d
)
return _unflatten_np(x_flat, x), generators
def _find_optimal_generators(self, objective_fn, x, generators, d):
r"""Optimizer for the generators.
Optimizes for the best generator at position ``d``.
Args:
objective_fn (function): The objective function for optimization. It must have the
signature ``objective_fn(x, generators=None)`` with a sequence of the values ``x``
and a list of the gates ``generators`` as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized over or a single float with the initial value
generators (list[~.Operation]): list containing the initial ``pennylane.ops.qubit``
operators to be used in the circuit and optimized over
d (int): the position in the input sequence ``x`` containing the value to be optimized
Returns:
tuple: tuple containing the parameter value and generator that, at position ``d`` in
``x`` and ``generators``, optimizes the objective function
"""
params_opt_d = x[d]
generators_opt_d = generators[d]
params_opt_cost = objective_fn(x, generators)
for generator in self.possible_generators:
generators[d] = generator
x = self._rotosolve(objective_fn, x, generators, d)
params_cost = objective_fn(x, generators)
# save the best paramter and generator for position d
if params_cost <= params_opt_cost:
params_opt_d = x[d]
params_opt_cost = params_cost
generators_opt_d = generator
return params_opt_d, generators_opt_d
@staticmethod
def _rotosolve(objective_fn, x, generators, d):
r"""The rotosolve step for one parameter and one set of generators.
Updates the parameter :math:`\theta_d` based on Equation 1 in
`Ostaszewski et al. (2021) <https://doi.org/10.22331/q-2021-01-28-391>`_.
Args:
objective_fn (function): The objective function for optimization. It must have the
signature ``objective_fn(x, generators=None)`` with a sequence of the values ``x``
and a list of the gates ``generators`` as inputs, returning a single value.
x (Union[Sequence[float], float]): sequence containing the initial values of the
variables to be optimized overs or a single float with the initial value
generators (list[~.Operation]): list containing the initial ``pennylane.ops.qubit``
operators to be used in the circuit and optimized over
d (int): the position in the input sequence ``x`` containing the value to be optimized
Returns:
array: the input sequence ``x`` with the value at position ``d`` optimized
"""
# helper function for x[d] = theta
def insert(x, d, theta):
x[d] = theta
return x
H_0 = float(objective_fn(insert(x, d, 0), generators))
H_p = float(objective_fn(insert(x, d, np.pi / 2), generators))
H_m = float(objective_fn(insert(x, d, -np.pi / 2), generators))
a = np.arctan2(2 * H_0 - H_p - H_m, H_p - H_m)
x[d] = -np.pi / 2 - a
if x[d] <= -np.pi:
x[d] += 2 * np.pi
return x
_modules/pennylane/optimize/rotoselect
Download Python script
Download Notebook
View on GitHub