Source code for pennylane.pauli.conversion

# Copyright 2018-2022 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility functions to convert between ``~.PauliSentence`` and other PennyLane operators.
"""
from functools import reduce, singledispatch
from itertools import product
from operator import matmul
from typing import Union

import pennylane as qml
from pennylane.math.utils import is_abstract
from pennylane.ops import Identity, LinearCombination, PauliX, PauliY, PauliZ, Prod, SProd, Sum
from pennylane.ops.qubit.matrix_ops import _walsh_hadamard_transform

from .pauli_arithmetic import I, PauliSentence, PauliWord, X, Y, Z, op_map
from .utils import is_pauli_word


# pylint: disable=too-many-branches
def _generalized_pauli_decompose(
    matrix, hide_identity=False, wire_order=None, pauli=False, padding=False
) -> tuple[qml.typing.TensorLike, list]:
    r"""Decomposes any matrix into a linear combination of Pauli operators.

    This method converts any matrix to a weighted sum of Pauli words acting on :math:`n` qubits
    in time :math:`O(n 4^n)`. The input matrix is first padded with zeros if its dimensions are not
    :math:`2^n\times 2^n` and written as a quantum state in the computational basis following the
    `channel-state duality <https://en.wikipedia.org/wiki/Channel-state_duality>`_.
    A Bell basis transformation is then performed using the
    `Walsh-Hadamard transform <https://en.wikipedia.org/wiki/Hadamard_transform>`_, after which
    coefficients for each of the :math:`4^n` Pauli words are computed while accounting for the
    phase from each ``PauliY`` term occurring in the word.

    Args:
        matrix (tensor_like[complex]): any matrix M, the keyword argument ``padding=True``
            should be provided if the dimension of M is not :math:`2^n\times 2^n`.
        hide_identity (bool): does not include the Identity observable within
            the tensor products of the decomposition if ``True``.
        wire_order (list[Union[int, str]]): the ordered list of wires with respect
            to which the operator is represented as a matrix.
        pauli (bool): return a PauliSentence instance if ``True``.
        padding (bool): makes the function compatible with rectangular matrices and square matrices
            that are not of shape :math:`2^n\times 2^n` by padding them with zeros if ``True``.

    Returns:
        Tuple[qml.math.array[complex], list]: the matrix decomposed as a linear combination of Pauli operators
        as a tuple consisting of an array of complex coefficients and a list of corresponding Pauli terms.

    **Example:**

    We can use this function to compute the Pauli operator decomposition of an arbitrary matrix:

    >>> A = np.array(
    ... [[-2, -2+1j, -2, -2], [-2-1j,  0,  0, -1], [-2,  0, -2, -1], [-2, -1, -1,  1j]])
    >>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A)
    >>> coeffs
    array([-1. +0.25j, -1.5+0.j  , -0.5+0.j  , -1. -0.25j, -1.5+0.j  ,
       -1. +0.j  , -0.5+0.j  ,  1. -0.j  ,  0. -0.25j, -0.5+0.j  ,
       -0.5+0.j  ,  0. +0.25j])
    >>> obs
    [I(0) @ I(1),
    I(0) @ X(1),
    I(0) @ Y(1),
    I(0) @ Z(1),
    X(0) @ I(1),
    X(0) @ X(1),
    X(0) @ Z(1),
    Y(0) @ Y(1),
    Z(0) @ I(1),
    Z(0) @ X(1),
    Z(0) @ Y(1),
    Z(0) @ Z(1)]

    We can also set custom wires using the ``wire_order`` argument:

    >>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A, wire_order=['a', 'b'])
    >>> obs
    [I('a') @ I('b'),
    I('a') @ X('b'),
    I('a') @ Y('b'),
    I('a') @ Z('b'),
    X('a') @ I('b'),
    X('a') @ X('b'),
    X('a') @ Z('b'),
    Y('a') @ Y('b'),
    Z('a') @ I('b'),
    Z('a') @ X('b'),
    Z('a') @ Y('b'),
    Z('a') @ Z('b')]

    .. details::
        :title: Advanced Usage Details
        :href: usage-decompose-operation

        For non-square matrices, we need to provide the ``padding=True`` keyword argument:

        >>> A = np.array([[-2, -2 + 1j]])
        >>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A, padding=True)
        >>> coeffs
        ([-1. +0.j , -1. +0.5j, -0.5-1.j , -1. +0.j ])
        >>> obs
        [I(0), X(0), Y(0), Z(0)]

        We can also use the method within a differentiable workflow and obtain gradients:

        >>> A = qml.numpy.array([[-2, -2 + 1j]], requires_grad=True)
        >>> dev = qml.device("default.qubit", wires=1)
        >>> @qml.qnode(dev)
        ... def circuit(A):
        ...    coeffs, _ = qml.pauli.conversion._generalized_pauli_decompose(A, padding=True)
        ...    qml.RX(qml.math.real(coeffs[2]), 0)
        ...    return qml.expval(qml.Z(0))
        >>> qml.grad(circuit)(A)
        array([[0.+0.j        , 0.+0.23971277j]])

    """
    # Ensuring original matrix is not manipulated and we support builtin types.
    matrix = qml.math.convert_like(matrix, next(iter([*matrix[0]]), []))

    # Pad with zeros to make the matrix shape equal and a power of two.
    if padding:
        shape = qml.math.shape(matrix)
        num_qubits = int(qml.math.ceil(qml.math.log2(qml.math.max(shape))))
        if shape[0] != shape[1] or shape[0] != 2**num_qubits:
            padd_diffs = qml.math.abs(qml.math.array(shape) - 2**num_qubits)
            padding = (
                ((0, padd_diffs[0]), (0, padd_diffs[1]))
                if qml.math.get_interface(matrix) != "torch"
                else ((padd_diffs[0], 0), (padd_diffs[1], 0))
            )
            matrix = qml.math.pad(matrix, padding, mode="constant", constant_values=0)

    shape = qml.math.shape(matrix)
    if shape[0] != shape[1]:
        raise ValueError(
            f"The matrix should be square, got {shape}. Use 'padding=True' for rectangular matrices."
        )

    num_qubits = int(qml.math.log2(shape[0]))
    if shape[0] != 2**num_qubits:
        raise ValueError(
            f"Dimension of the matrix should be a power of 2, got {shape}. Use 'padding=True' for these matrices."
        )

    if wire_order is not None and len(wire_order) != num_qubits:
        raise ValueError(
            f"number of wires {len(wire_order)} is not compatible with the number of qubits {num_qubits}"
        )

    if wire_order is None:
        wire_order = range(num_qubits)

    # Permute by XORing
    indices = [qml.math.array(range(shape[0]))]
    for idx in range(shape[0] - 1):
        indices.append(qml.math.bitwise_xor(indices[-1], (idx + 1) ^ (idx)))
    term_mat = qml.math.cast(
        qml.math.stack(
            [qml.math.gather(matrix[idx], indice) for idx, indice in enumerate(indices)]
        ),
        complex,
    )

    # Perform Hadamard transformation on coloumns
    hadamard_transform_mat = _walsh_hadamard_transform(qml.math.transpose(term_mat))

    # Account for the phases from Y
    phase_mat = qml.math.ones(shape, dtype=complex).reshape((2,) * (2 * num_qubits))
    for idx in range(num_qubits):
        index = [slice(None)] * (2 * num_qubits)
        index[idx] = index[idx + num_qubits] = 1
        phase_mat[tuple(index)] *= 1j
    phase_mat = qml.math.convert_like(qml.math.reshape(phase_mat, shape), matrix)

    # c_00 + c_11 -> I; c_00 - c_11 -> Z; c_01 + c_10 -> X; 1j*(c_10 - c_01) -> Y
    # https://quantumcomputing.stackexchange.com/a/31790
    term_mat = qml.math.transpose(qml.math.multiply(hadamard_transform_mat, phase_mat))

    # Obtain the coefficients for each Pauli word
    coeffs, obs = [], []
    for pauli_rep in product("IXYZ", repeat=num_qubits):
        bit_array = qml.math.array(
            [[(rep in "YZ"), (rep in "XY")] for rep in pauli_rep], dtype=int
        ).T
        coefficient = term_mat[tuple(int("".join(map(str, x)), 2) for x in bit_array)]

        if not is_abstract(matrix) and qml.math.allclose(coefficient, 0):
            continue

        observables = (
            [(o, w) for w, o in zip(wire_order, pauli_rep) if o != I]
            if hide_identity and not all(t == I for t in pauli_rep)
            else [(o, w) for w, o in zip(wire_order, pauli_rep)]
        )
        if observables:
            coeffs.append(coefficient)
            obs.append(observables)

    coeffs = qml.math.stack(coeffs)

    if not pauli:
        with qml.QueuingManager.stop_recording():
            obs = [reduce(matmul, [op_map[o](w) for o, w in obs_term]) for obs_term in obs]

    return (coeffs, obs)


[docs]def pauli_decompose( H, hide_identity=False, wire_order=None, pauli=False, check_hermitian=True ) -> Union[LinearCombination, PauliSentence]: r"""Decomposes a Hermitian matrix into a linear combination of Pauli operators. Args: H (tensor_like[complex]): a Hermitian matrix of dimension :math:`2^n\times 2^n`. hide_identity (bool): does not include the Identity observable within the tensor products of the decomposition if ``True``. wire_order (list[Union[int, str]]): the ordered list of wires with respect to which the operator is represented as a matrix. pauli (bool): return a :class:`~.PauliSentence` instance if ``True``. check_hermitian (bool): check if the provided matrix is Hermitian if ``True``. Returns: Union[~.LinearCombination, ~.PauliSentence]: the matrix decomposed as a linear combination of Pauli operators, returned either as a :class:`~.ops.LinearCombination` or :class:`~.PauliSentence` instance. **Example:** We can use this function to compute the Pauli operator decomposition of an arbitrary Hermitian matrix: >>> import pennylane as qml >>> import numpy as np >>> A = np.array( ... [[-2, -2+1j, -2, -2], [-2-1j, 0, 0, -1], [-2, 0, -2, -1], [-2, -1, -1, 0]]) >>> H = qml.pauli_decompose(A) >>> print(H) (-1.5) [I0 X1] + (-1.5) [X0 I1] + (-1.0) [I0 I1] + (-1.0) [I0 Z1] + (-1.0) [X0 X1] + (-0.5) [I0 Y1] + (-0.5) [X0 Z1] + (-0.5) [Z0 X1] + (-0.5) [Z0 Y1] + (1.0) [Y0 Y1] We can return a :class:`~.PauliSentence` instance by using the keyword argument ``pauli=True``: >>> ps = qml.pauli_decompose(A, pauli=True) >>> print(ps) -1.0 * I + -1.5 * X(1) + -0.5 * Y(1) + -1.0 * Z(1) + -1.5 * X(0) + -1.0 * X(0) @ X(1) + -0.5 * X(0) @ Z(1) + 1.0 * Y(0) @ Y(1) + -0.5 * Z(0) @ X(1) + -0.5 * Z(0) @ Y(1) By default the wires are numbered [0, 1, ..., n], but we can also set custom wires using the ``wire_order`` argument: >>> ps = qml.pauli_decompose(A, pauli=True, wire_order=['a', 'b']) >>> print(ps) -1.0 * I + -1.5 * X(b) + -0.5 * Y(b) + -1.0 * Z(b) + -1.5 * X(a) + -1.0 * X(a) @ X(b) + -0.5 * X(a) @ Z(b) + 1.0 * Y(a) @ Y(b) + -0.5 * Z(a) @ X(b) + -0.5 * Z(a) @ Y(b) .. details:: :title: Theory :href: theory This method internally uses a generalized decomposition routine to convert the matrix to a weighted sum of Pauli words acting on :math:`n` qubits in time :math:`O(n 4^n)`. The input matrix is written as a quantum state in the computational basis following the `channel-state duality <https://en.wikipedia.org/wiki/Channel-state_duality>`_. A Bell basis transformation is then performed using the `Walsh-Hadamard transform <https://en.wikipedia.org/wiki/Hadamard_transform>`_, after which coefficients for each of the :math:`4^n` Pauli words are computed while accounting for the phase from each ``PauliY`` term occurring in the word. """ shape = qml.math.shape(H) n = int(qml.math.log2(shape[0])) N = 2**n if check_hermitian: if shape != (N, N): raise ValueError("The matrix should have shape (2**n, 2**n), for any qubit number n>=1") if not is_abstract(H) and not qml.math.allclose(H, qml.math.conj(qml.math.transpose(H))): raise ValueError("The matrix is not Hermitian") coeffs, obs = _generalized_pauli_decompose( H, hide_identity=hide_identity, wire_order=wire_order, pauli=pauli, padding=True ) if check_hermitian: coeffs = qml.math.real(coeffs) if pauli: return PauliSentence( { PauliWord({w: o for o, w in obs_n_wires}): coeff for coeff, obs_n_wires in zip(coeffs, obs) } ) return qml.Hamiltonian(coeffs, obs)
[docs]def pauli_sentence(op): """Return the PauliSentence representation of an arithmetic operator or Hamiltonian. Args: op (~.Operator): The operator or Hamiltonian that needs to be converted. Raises: ValueError: Op must be a linear combination of Pauli operators Returns: .PauliSentence: the PauliSentence representation of an arithmetic operator or Hamiltonian """ if isinstance(op, PauliWord): return PauliSentence({op: 1.0}) if isinstance(op, PauliSentence): return op if (ps := op.pauli_rep) is not None: return ps return _pauli_sentence(op)
def is_pauli_sentence(op): """Returns True of the operator is a PauliSentence and False otherwise.""" if op.pauli_rep is not None: return True return False @singledispatch def _pauli_sentence(op): """Private function to dispatch""" raise ValueError(f"Op must be a linear combination of Pauli operators only, got: {op}") @_pauli_sentence.register def _(op: PauliX): return PauliSentence({PauliWord({op.wires[0]: X}): 1.0}) @_pauli_sentence.register def _(op: PauliY): return PauliSentence({PauliWord({op.wires[0]: Y}): 1.0}) @_pauli_sentence.register def _(op: PauliZ): return PauliSentence({PauliWord({op.wires[0]: Z}): 1.0}) @_pauli_sentence.register def _(op: Identity): # pylint:disable=unused-argument return PauliSentence({PauliWord({}): 1.0}) @_pauli_sentence.register def _(op: Prod): factors = (_pauli_sentence(factor) for factor in op) return reduce(lambda a, b: a @ b, factors) @_pauli_sentence.register def _(op: SProd): ps = _pauli_sentence(op.base) for pw, coeff in ps.items(): ps[pw] = coeff * op.scalar return ps @_pauli_sentence.register(LinearCombination) def _(op: LinearCombination): if not all(is_pauli_word(o) for o in op.ops): raise ValueError(f"Op must be a linear combination of Pauli operators only, got: {op}") return op._build_pauli_rep() # pylint: disable=protected-access @_pauli_sentence.register def _(op: Sum): ps = PauliSentence() for term in op: ps += _pauli_sentence(term) return ps