Source code for pennylane.pauli.conversion
# Copyright 2018-2022 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility functions to convert between ``~.PauliSentence`` and other PennyLane operators.
"""
from functools import reduce, singledispatch
from itertools import product
from operator import matmul
from typing import Union
import pennylane as qml
from pennylane.math.utils import is_abstract
from pennylane.ops import Identity, LinearCombination, PauliX, PauliY, PauliZ, Prod, SProd, Sum
from pennylane.ops.qubit.matrix_ops import _walsh_hadamard_transform
from .pauli_arithmetic import I, PauliSentence, PauliWord, X, Y, Z, op_map
from .utils import is_pauli_word
# pylint: disable=too-many-branches
def _generalized_pauli_decompose(
matrix, hide_identity=False, wire_order=None, pauli=False, padding=False
) -> tuple[qml.typing.TensorLike, list]:
r"""Decomposes any matrix into a linear combination of Pauli operators.
This method converts any matrix to a weighted sum of Pauli words acting on :math:`n` qubits
in time :math:`O(n 4^n)`. The input matrix is first padded with zeros if its dimensions are not
:math:`2^n\times 2^n` and written as a quantum state in the computational basis following the
`channel-state duality <https://en.wikipedia.org/wiki/Channel-state_duality>`_.
A Bell basis transformation is then performed using the
`Walsh-Hadamard transform <https://en.wikipedia.org/wiki/Hadamard_transform>`_, after which
coefficients for each of the :math:`4^n` Pauli words are computed while accounting for the
phase from each ``PauliY`` term occurring in the word.
Args:
matrix (tensor_like[complex]): any matrix M, the keyword argument ``padding=True``
should be provided if the dimension of M is not :math:`2^n\times 2^n`.
hide_identity (bool): does not include the Identity observable within
the tensor products of the decomposition if ``True``.
wire_order (list[Union[int, str]]): the ordered list of wires with respect
to which the operator is represented as a matrix.
pauli (bool): return a PauliSentence instance if ``True``.
padding (bool): makes the function compatible with rectangular matrices and square matrices
that are not of shape :math:`2^n\times 2^n` by padding them with zeros if ``True``.
Returns:
Tuple[qml.math.array[complex], list]: the matrix decomposed as a linear combination of Pauli operators
as a tuple consisting of an array of complex coefficients and a list of corresponding Pauli terms.
**Example:**
We can use this function to compute the Pauli operator decomposition of an arbitrary matrix:
>>> A = np.array(
... [[-2, -2+1j, -2, -2], [-2-1j, 0, 0, -1], [-2, 0, -2, -1], [-2, -1, -1, 1j]])
>>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A)
>>> coeffs
array([-1. +0.25j, -1.5+0.j , -0.5+0.j , -1. -0.25j, -1.5+0.j ,
-1. +0.j , -0.5+0.j , 1. -0.j , 0. -0.25j, -0.5+0.j ,
-0.5+0.j , 0. +0.25j])
>>> obs
[I(0) @ I(1),
I(0) @ X(1),
I(0) @ Y(1),
I(0) @ Z(1),
X(0) @ I(1),
X(0) @ X(1),
X(0) @ Z(1),
Y(0) @ Y(1),
Z(0) @ I(1),
Z(0) @ X(1),
Z(0) @ Y(1),
Z(0) @ Z(1)]
We can also set custom wires using the ``wire_order`` argument:
>>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A, wire_order=['a', 'b'])
>>> obs
[I('a') @ I('b'),
I('a') @ X('b'),
I('a') @ Y('b'),
I('a') @ Z('b'),
X('a') @ I('b'),
X('a') @ X('b'),
X('a') @ Z('b'),
Y('a') @ Y('b'),
Z('a') @ I('b'),
Z('a') @ X('b'),
Z('a') @ Y('b'),
Z('a') @ Z('b')]
.. details::
:title: Advanced Usage Details
:href: usage-decompose-operation
For non-square matrices, we need to provide the ``padding=True`` keyword argument:
>>> A = np.array([[-2, -2 + 1j]])
>>> coeffs, obs = qml.pauli.conversion._generalized_pauli_decompose(A, padding=True)
>>> coeffs
([-1. +0.j , -1. +0.5j, -0.5-1.j , -1. +0.j ])
>>> obs
[I(0), X(0), Y(0), Z(0)]
We can also use the method within a differentiable workflow and obtain gradients:
>>> A = qml.numpy.array([[-2, -2 + 1j]], requires_grad=True)
>>> dev = qml.device("default.qubit", wires=1)
>>> @qml.qnode(dev)
... def circuit(A):
... coeffs, _ = qml.pauli.conversion._generalized_pauli_decompose(A, padding=True)
... qml.RX(qml.math.real(coeffs[2]), 0)
... return qml.expval(qml.Z(0))
>>> qml.grad(circuit)(A)
array([[0.+0.j , 0.+0.23971277j]])
"""
# Ensuring original matrix is not manipulated and we support builtin types.
matrix = qml.math.convert_like(matrix, next(iter([*matrix[0]]), []))
# Pad with zeros to make the matrix shape equal and a power of two.
if padding:
shape = qml.math.shape(matrix)
num_qubits = int(qml.math.ceil(qml.math.log2(qml.math.max(shape))))
if shape[0] != shape[1] or shape[0] != 2**num_qubits:
padd_diffs = qml.math.abs(qml.math.array(shape) - 2**num_qubits)
padding = (
((0, padd_diffs[0]), (0, padd_diffs[1]))
if qml.math.get_interface(matrix) != "torch"
else ((padd_diffs[0], 0), (padd_diffs[1], 0))
)
matrix = qml.math.pad(matrix, padding, mode="constant", constant_values=0)
shape = qml.math.shape(matrix)
if shape[0] != shape[1]:
raise ValueError(
f"The matrix should be square, got {shape}. Use 'padding=True' for rectangular matrices."
)
num_qubits = int(qml.math.log2(shape[0]))
if shape[0] != 2**num_qubits:
raise ValueError(
f"Dimension of the matrix should be a power of 2, got {shape}. Use 'padding=True' for these matrices."
)
if wire_order is not None and len(wire_order) != num_qubits:
raise ValueError(
f"number of wires {len(wire_order)} is not compatible with the number of qubits {num_qubits}"
)
if wire_order is None:
wire_order = range(num_qubits)
# Permute by XORing
indices = [qml.math.array(range(shape[0]))]
for idx in range(shape[0] - 1):
indices.append(qml.math.bitwise_xor(indices[-1], (idx + 1) ^ (idx)))
term_mat = qml.math.cast(
qml.math.stack(
[qml.math.gather(matrix[idx], indice) for idx, indice in enumerate(indices)]
),
complex,
)
# Perform Hadamard transformation on coloumns
hadamard_transform_mat = _walsh_hadamard_transform(qml.math.transpose(term_mat))
# Account for the phases from Y
phase_mat = qml.math.ones(shape, dtype=complex).reshape((2,) * (2 * num_qubits))
for idx in range(num_qubits):
index = [slice(None)] * (2 * num_qubits)
index[idx] = index[idx + num_qubits] = 1
phase_mat[tuple(index)] *= 1j
phase_mat = qml.math.convert_like(qml.math.reshape(phase_mat, shape), matrix)
# c_00 + c_11 -> I; c_00 - c_11 -> Z; c_01 + c_10 -> X; 1j*(c_10 - c_01) -> Y
# https://quantumcomputing.stackexchange.com/a/31790
term_mat = qml.math.transpose(qml.math.multiply(hadamard_transform_mat, phase_mat))
# Obtain the coefficients for each Pauli word
coeffs, obs = [], []
for pauli_rep in product("IXYZ", repeat=num_qubits):
bit_array = qml.math.array(
[[(rep in "YZ"), (rep in "XY")] for rep in pauli_rep], dtype=int
).T
coefficient = term_mat[tuple(int("".join(map(str, x)), 2) for x in bit_array)]
if not is_abstract(matrix) and qml.math.allclose(coefficient, 0):
continue
observables = (
[(o, w) for w, o in zip(wire_order, pauli_rep) if o != I]
if hide_identity and not all(t == I for t in pauli_rep)
else [(o, w) for w, o in zip(wire_order, pauli_rep)]
)
if observables:
coeffs.append(coefficient)
obs.append(observables)
coeffs = qml.math.stack(coeffs)
if not pauli:
with qml.QueuingManager.stop_recording():
obs = [reduce(matmul, [op_map[o](w) for o, w in obs_term]) for obs_term in obs]
return (coeffs, obs)
[docs]def pauli_decompose(
H, hide_identity=False, wire_order=None, pauli=False, check_hermitian=True
) -> Union[LinearCombination, PauliSentence]:
r"""Decomposes a Hermitian matrix into a linear combination of Pauli operators.
Args:
H (tensor_like[complex]): a Hermitian matrix of dimension :math:`2^n\times 2^n`.
hide_identity (bool): does not include the Identity observable within
the tensor products of the decomposition if ``True``.
wire_order (list[Union[int, str]]): the ordered list of wires with respect
to which the operator is represented as a matrix.
pauli (bool): return a :class:`~.PauliSentence` instance if ``True``.
check_hermitian (bool): check if the provided matrix is Hermitian if ``True``.
Returns:
Union[~.LinearCombination, ~.PauliSentence]: the matrix decomposed as a linear combination
of Pauli operators, returned either as a :class:`~.ops.LinearCombination` or :class:`~.PauliSentence`
instance.
**Example:**
We can use this function to compute the Pauli operator decomposition of an arbitrary Hermitian
matrix:
>>> import pennylane as qml
>>> import numpy as np
>>> A = np.array(
... [[-2, -2+1j, -2, -2], [-2-1j, 0, 0, -1], [-2, 0, -2, -1], [-2, -1, -1, 0]])
>>> H = qml.pauli_decompose(A)
>>> print(H)
(-1.5) [I0 X1]
+ (-1.5) [X0 I1]
+ (-1.0) [I0 I1]
+ (-1.0) [I0 Z1]
+ (-1.0) [X0 X1]
+ (-0.5) [I0 Y1]
+ (-0.5) [X0 Z1]
+ (-0.5) [Z0 X1]
+ (-0.5) [Z0 Y1]
+ (1.0) [Y0 Y1]
We can return a :class:`~.PauliSentence` instance by using the keyword argument ``pauli=True``:
>>> ps = qml.pauli_decompose(A, pauli=True)
>>> print(ps)
-1.0 * I
+ -1.5 * X(1)
+ -0.5 * Y(1)
+ -1.0 * Z(1)
+ -1.5 * X(0)
+ -1.0 * X(0) @ X(1)
+ -0.5 * X(0) @ Z(1)
+ 1.0 * Y(0) @ Y(1)
+ -0.5 * Z(0) @ X(1)
+ -0.5 * Z(0) @ Y(1)
By default the wires are numbered [0, 1, ..., n], but we can also set custom wires using the
``wire_order`` argument:
>>> ps = qml.pauli_decompose(A, pauli=True, wire_order=['a', 'b'])
>>> print(ps)
-1.0 * I
+ -1.5 * X(b)
+ -0.5 * Y(b)
+ -1.0 * Z(b)
+ -1.5 * X(a)
+ -1.0 * X(a) @ X(b)
+ -0.5 * X(a) @ Z(b)
+ 1.0 * Y(a) @ Y(b)
+ -0.5 * Z(a) @ X(b)
+ -0.5 * Z(a) @ Y(b)
.. details::
:title: Theory
:href: theory
This method internally uses a generalized decomposition routine to convert the matrix to a
weighted sum of Pauli words acting on :math:`n` qubits in time :math:`O(n 4^n)`. The input
matrix is written as a quantum state in the computational basis following the
`channel-state duality <https://en.wikipedia.org/wiki/Channel-state_duality>`_.
A Bell basis transformation is then performed using the
`Walsh-Hadamard transform <https://en.wikipedia.org/wiki/Hadamard_transform>`_, after which
coefficients for each of the :math:`4^n` Pauli words are computed while accounting for the
phase from each ``PauliY`` term occurring in the word.
"""
shape = qml.math.shape(H)
n = int(qml.math.log2(shape[0]))
N = 2**n
if check_hermitian:
if shape != (N, N):
raise ValueError("The matrix should have shape (2**n, 2**n), for any qubit number n>=1")
if not is_abstract(H) and not qml.math.allclose(H, qml.math.conj(qml.math.transpose(H))):
raise ValueError("The matrix is not Hermitian")
coeffs, obs = _generalized_pauli_decompose(
H, hide_identity=hide_identity, wire_order=wire_order, pauli=pauli, padding=True
)
if check_hermitian:
coeffs = qml.math.real(coeffs)
if pauli:
return PauliSentence(
{
PauliWord({w: o for o, w in obs_n_wires}): coeff
for coeff, obs_n_wires in zip(coeffs, obs)
}
)
return qml.Hamiltonian(coeffs, obs)
[docs]def pauli_sentence(op):
"""Return the PauliSentence representation of an arithmetic operator or Hamiltonian.
Args:
op (~.Operator): The operator or Hamiltonian that needs to be converted.
Raises:
ValueError: Op must be a linear combination of Pauli operators
Returns:
.PauliSentence: the PauliSentence representation of an arithmetic operator or Hamiltonian
"""
if isinstance(op, PauliWord):
return PauliSentence({op: 1.0})
if isinstance(op, PauliSentence):
return op
if (ps := op.pauli_rep) is not None:
return ps
return _pauli_sentence(op)
def is_pauli_sentence(op):
"""Returns True of the operator is a PauliSentence and False otherwise."""
if op.pauli_rep is not None:
return True
return False
@singledispatch
def _pauli_sentence(op):
"""Private function to dispatch"""
raise ValueError(f"Op must be a linear combination of Pauli operators only, got: {op}")
@_pauli_sentence.register
def _(op: PauliX):
return PauliSentence({PauliWord({op.wires[0]: X}): 1.0})
@_pauli_sentence.register
def _(op: PauliY):
return PauliSentence({PauliWord({op.wires[0]: Y}): 1.0})
@_pauli_sentence.register
def _(op: PauliZ):
return PauliSentence({PauliWord({op.wires[0]: Z}): 1.0})
@_pauli_sentence.register
def _(op: Identity): # pylint:disable=unused-argument
return PauliSentence({PauliWord({}): 1.0})
@_pauli_sentence.register
def _(op: Prod):
factors = (_pauli_sentence(factor) for factor in op)
return reduce(lambda a, b: a @ b, factors)
@_pauli_sentence.register
def _(op: SProd):
ps = _pauli_sentence(op.base)
for pw, coeff in ps.items():
ps[pw] = coeff * op.scalar
return ps
@_pauli_sentence.register(LinearCombination)
def _(op: LinearCombination):
if not all(is_pauli_word(o) for o in op.ops):
raise ValueError(f"Op must be a linear combination of Pauli operators only, got: {op}")
return op._build_pauli_rep() # pylint: disable=protected-access
@_pauli_sentence.register
def _(op: Sum):
ps = PauliSentence()
for term in op:
ps += _pauli_sentence(term)
return ps
_modules/pennylane/pauli/conversion
Download Python script
Download Notebook
View on GitHub