Source code for pennylane.pauli.utils

# Copyright 2018-2022 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility functions used in Pauli arithmetic, partitioning, and measurement reduction schemes utilizing the
symplectic vector-space representation of Pauli words. For information on the symplectic binary
representation of Pauli words and applications, see:

* `arXiv:quant-ph/9705052 <https://arxiv.org/abs/quant-ph/9705052>`_
* `arXiv:1701.08213 <https://arxiv.org/abs/1701.08213>`_
* `arXiv:1907.09386 <https://arxiv.org/abs/1907.09386>`_
"""
from itertools import product
from typing import List
from functools import reduce, lru_cache

import numpy as np
import pennylane as qml

from pennylane.wires import Wires
from pennylane.tape import OperationRecorder
from pennylane.ops.qubit.hamiltonian import Hamiltonian
from pennylane.ops import Identity, PauliX, PauliY, PauliZ
from pennylane.operation import Tensor, Observable

# To make this quicker later on
ID_MAT = np.eye(2)


def _wire_map_from_pauli_pair(pauli_word_1, pauli_word_2):
    """Generate a wire map from the union of wires of two Paulis.

    Args:
        pauli_word_1 (.Operation): A Pauli word.
        pauli_word_2 (.Operation): A second Pauli word.

    Returns:
        dict[Union[str, int], int]): dictionary containing all wire labels used
        in the Pauli word as keys, and unique integer labels as their values.
    """
    wire_labels = Wires.all_wires([pauli_word_1.wires, pauli_word_2.wires]).labels
    wire_map = {label: i for i, label in enumerate(wire_labels)}
    return wire_map


[docs]def is_pauli_word(observable): """ Checks if an observable instance consists only of Pauli and Identity Operators. .. Warning:: This function will only confirm that all operators are Pauli or Identity operators, and not whether the Observable is mathematically a Pauli word. If an Observable consists of multiple Pauli operators targeting the same wire, the function will return ``True`` regardless of any complex coefficients. Args: observable (~.Observable): the operator to be examined Returns: bool: true if the input observable is a Pauli word, false otherwise. **Example** >>> is_pauli_word(qml.Identity(0)) True >>> is_pauli_word(qml.PauliX(0) @ qml.PauliZ(2)) True >>> is_pauli_word(qml.PauliZ(0) @ qml.Hadamard(1)) False """ if not isinstance(observable, Observable): return False pauli_word_names = ["Identity", "PauliX", "PauliY", "PauliZ"] if isinstance(observable, Tensor): return set(observable.name).issubset(pauli_word_names) if isinstance(observable, Hamiltonian): terms_pauli_word = [] for _, ob in zip(*observable.terms()): terms_pauli_word.append(is_pauli_word(ob)) return all(terms_pauli_word) return observable.name in pauli_word_names
[docs]def are_identical_pauli_words(pauli_1, pauli_2): # pylint: disable=isinstance-second-argument-not-valid-type """Performs a check if two Pauli words have the same ``wires`` and ``name`` attributes. This is a convenience function that checks if two given :class:`~.Tensor` instances specify the same Pauli word. This function only checks if both :class:`~.Tensor` instances have the same wires and name attributes, and hence won't perform any simplification to identify if the two Pauli words are algebraically equivalent. For instance, this function will not identify that ``PauliX(0) @ PauliX(0) = Identity(0)``, or ``PauliX(0) @ Identity(1) = PauliX(0)``, or ``Identity(0) = Identity(1)``, etc. Args: pauli_1 (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the first Pauli word pauli_2 (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the second Pauli word Returns: bool: whether ``pauli_1`` and ``pauli_2`` have the same wires and name attributes Raises: TypeError: if ``pauli_1`` or ``pauli_2`` are not :class:`~.Identity`, :class:`~.PauliX`, :class:`~.PauliY`, :class:`~.PauliZ`, or :class:`~.Tensor` instances **Example** >>> are_identical_pauli_words(qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliZ(0) @ qml.PauliZ(1)) True >>> are_identical_pauli_words(qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliZ(0) @ qml.PauliX(3)) False """ if not (is_pauli_word(pauli_1) and is_pauli_word(pauli_2)): raise TypeError(f"Expected Pauli word observables, instead got {pauli_1} and {pauli_2}.") paulis_with_identity = (PauliX, PauliY, PauliZ, Identity) # convert tensors of length 1 to plain observables pauli_1 = getattr(pauli_1, "prune", lambda: pauli_1)() pauli_2 = getattr(pauli_2, "prune", lambda: pauli_2)() if isinstance(pauli_1, paulis_with_identity) and isinstance(pauli_2, paulis_with_identity): return (pauli_1.wires, pauli_1.name) == (pauli_2.wires, pauli_2.name) if isinstance(pauli_1, paulis_with_identity) and isinstance(pauli_2, Tensor): return {(pauli_1.wires, pauli_1.name)} == set(zip(pauli_2.wires, pauli_2.name)) if isinstance(pauli_1, Tensor) and isinstance(pauli_2, paulis_with_identity): return set(zip(pauli_1.wires, pauli_1.name)) == {(pauli_2.wires, pauli_2.name)} return set(zip(pauli_1.wires, pauli_1.name)) == set(zip(pauli_2.wires, pauli_2.name))
[docs]def pauli_to_binary(pauli_word, n_qubits=None, wire_map=None, check_is_pauli_word=True): # pylint: disable=isinstance-second-argument-not-valid-type """Converts a Pauli word to the binary vector representation. This functions follows convention that the first half of binary vector components specify PauliX placements while the last half specify PauliZ placements. Args: pauli_word (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the Pauli word to be converted to binary vector representation n_qubits (int): number of qubits to specify dimension of binary vector representation wire_map (dict): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values check_is_pauli_word (bool): If True (default) then a check is run to verify that pauli_word is infact a Pauli word Returns: array: the ``2*n_qubits`` dimensional binary vector representation of the input Pauli word Raises: TypeError: if the input ``pauli_word`` is not an instance of Identity, PauliX, PauliY, PauliZ or tensor products thereof ValueError: if ``n_qubits`` is less than the number of wires acted on by the Pauli word **Example** If ``n_qubits`` and ``wire_map`` are both unspecified, the dimensionality of the binary vector will be ``2 * len(pauli_word.wires)``. Regardless of wire labels, the vector components encoding Pauli operations will be read from left-to-right in the tensor product when ``wire_map`` is unspecified, e.g., >>> pauli_to_binary(qml.PauliX('a') @ qml.PauliY('b') @ qml.PauliZ('c')) array([1., 1., 0., 0., 1., 1.]) >>> pauli_to_binary(qml.PauliX('c') @ qml.PauliY('a') @ qml.PauliZ('b')) array([1., 1., 0., 0., 1., 1.]) The above cases have the same binary representation since they are equivalent up to a relabelling of the wires. To keep binary vector component enumeration consistent with wire labelling across multiple Pauli words, or define any arbitrary enumeration, one can use keyword argument ``wire_map`` to set this enumeration. >>> wire_map = {'a': 0, 'b': 1, 'c': 2} >>> pauli_to_binary(qml.PauliX('a') @ qml.PauliY('b') @ qml.PauliZ('c'), wire_map=wire_map) array([1., 1., 0., 0., 1., 1.]) >>> pauli_to_binary(qml.PauliX('c') @ qml.PauliY('a') @ qml.PauliZ('b'), wire_map=wire_map) array([1., 0., 1., 1., 1., 0.]) Now the two Pauli words are distinct in the binary vector representation, as the vector components are consistently mapped from the wire labels, rather than enumerated left-to-right. If ``n_qubits`` is unspecified, the dimensionality of the vector representation will be inferred from the size of support of the Pauli word, >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1)) array([1., 1., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5)) array([1., 1., 0., 0.]) Dimensionality higher than twice the support can be specified by ``n_qubits``, >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1), n_qubits=6) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), n_qubits=6) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) For these Pauli words to have a consistent mapping to vector representation, we once again need to specify a ``wire_map``. >>> wire_map = {0:0, 1:1, 5:5} >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1), n_qubits=6, wire_map=wire_map) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), n_qubits=6, wire_map=wire_map) array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]) Note that if ``n_qubits`` is unspecified and ``wire_map`` is specified, the dimensionality of the vector representation will be inferred from the highest integer in ``wire_map.values()``. >>> wire_map = {0:0, 1:1, 5:5} >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), wire_map=wire_map) array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]) """ if check_is_pauli_word and not is_pauli_word(pauli_word): raise TypeError(f"Expected a Pauli word Observable instance, instead got {pauli_word}.") if wire_map is None: num_wires = len(pauli_word.wires) wire_map = {pauli_word.wires[i]: i for i in range(num_wires)} n_qubits_min = max(wire_map.values()) + 1 if n_qubits is None: n_qubits = n_qubits_min elif n_qubits < n_qubits_min: raise ValueError( f"n_qubits must support the highest mapped wire index {n_qubits_min}," f" instead got n_qubits={n_qubits}." ) pauli_wires = pauli_word.wires.map(wire_map).tolist() binary_pauli = np.zeros(2 * n_qubits) paulis_with_identity = (PauliX, PauliY, PauliZ, Identity) if isinstance(pauli_word, paulis_with_identity): operations_zip = zip(pauli_wires, [pauli_word.name]) else: operations_zip = zip(pauli_wires, pauli_word.name) for wire, name in operations_zip: if name == "PauliX": binary_pauli[wire] = 1 elif name == "PauliY": binary_pauli[wire] = 1 binary_pauli[n_qubits + wire] = 1 elif name == "PauliZ": binary_pauli[n_qubits + wire] = 1 return binary_pauli
[docs]def binary_to_pauli(binary_vector, wire_map=None): # pylint: disable=too-many-branches """Converts a binary vector of even dimension to an Observable instance. This functions follows the convention that the first half of binary vector components specify PauliX placements while the last half specify PauliZ placements. Args: binary_vector (Union[list, tuple, array]): binary vector of even dimension representing a unique Pauli word wire_map (dict): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: Tensor: The Pauli word corresponding to the input binary vector. Note that if a zero vector is input, then the resulting Pauli word will be an :class:`~.Identity` instance. Raises: TypeError: if length of binary vector is not even, or if vector does not have strictly binary components **Example** If ``wire_map`` is unspecified, the Pauli operations follow the same enumerations as the vector components, i.e., the ``i`` and ``N+i`` components specify the Pauli operation on wire ``i``, >>> binary_to_pauli([0,1,1,0,1,0]) Tensor(PauliY(wires=[1]), PauliX(wires=[2])) An arbitrary labelling can be assigned by using ``wire_map``: >>> wire_map = {'a': 0, 'b': 1, 'c': 2} >>> binary_to_pauli([0,1,1,0,1,0], wire_map=wire_map) Tensor(PauliY(wires=['b']), PauliX(wires=['c'])) Note that the values of ``wire_map``, if specified, must be ``0,1,..., N``, where ``N`` is the dimension of the vector divided by two, i.e., ``list(wire_map.values())`` must be ``list(range(len(binary_vector)/2))``. """ if isinstance(binary_vector, (list, tuple)): binary_vector = np.asarray(binary_vector) if len(binary_vector) % 2 != 0: raise ValueError( f"Length of binary_vector must be even, instead got vector of shape {np.shape(binary_vector)}." ) if not np.array_equal(binary_vector, binary_vector.astype(bool)): raise ValueError( f"Input vector must have strictly binary components, instead got {binary_vector}." ) n_qubits = len(binary_vector) // 2 if wire_map is None: label_map = {i: i for i in range(n_qubits)} else: if set(wire_map.values()) != set(range(n_qubits)): raise ValueError( f"The values of wire_map must be integers 0 to N, for 2N-dimensional binary vector." f" Instead got wire_map values: {wire_map.values()}" ) label_map = {explicit_index: wire_label for wire_label, explicit_index in wire_map.items()} pauli_word = None for i in range(n_qubits): operation = None if binary_vector[i] == 1 and binary_vector[n_qubits + i] == 0: operation = PauliX(wires=Wires([label_map[i]])) elif binary_vector[i] == 1 and binary_vector[n_qubits + i] == 1: operation = PauliY(wires=Wires([label_map[i]])) elif binary_vector[i] == 0 and binary_vector[n_qubits + i] == 1: operation = PauliZ(wires=Wires([label_map[i]])) if operation is not None: if pauli_word is None: pauli_word = operation else: pauli_word @= operation if pauli_word is None: return Identity(wires=list(label_map.values())[0]) return pauli_word
[docs]def pauli_word_to_string(pauli_word, wire_map=None): """Convert a Pauli word from a tensor to a string. Given a Pauli in observable form, convert it into string of characters from ``['I', 'X', 'Y', 'Z']``. This representation is required for functions such as :class:`.PauliRot`. Args: pauli_word (Observable): an observable, either a :class:`~.Tensor` instance or single-qubit observable representing a Pauli group element. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: str: The string representation of the observable in terms of ``'I'``, ``'X'``, ``'Y'``, and/or ``'Z'``. Raises: TypeError: if the input observable is not a proper Pauli word. **Example** >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> pauli_word = qml.PauliX('a') @ qml.PauliY('c') >>> pauli_word_to_string(pauli_word, wire_map=wire_map) 'XIY' """ if not is_pauli_word(pauli_word): raise TypeError(f"Expected Pauli word observables, instead got {pauli_word}") character_map = {"Identity": "I", "PauliX": "X", "PauliY": "Y", "PauliZ": "Z"} # If there is no wire map, we must infer from the structure of Paulis if wire_map is None: wire_map = {pauli_word.wires.labels[i]: i for i in range(len(pauli_word.wires))} n_qubits = len(wire_map) # Set default value of all characters to identity pauli_string = ["I"] * n_qubits # Special case is when there is a single Pauli term if not isinstance(pauli_word.name, list): if pauli_word.name != "Identity": wire_idx = wire_map[pauli_word.wires[0]] pauli_string[wire_idx] = character_map[pauli_word.name] return "".join(pauli_string) for name, wire_label in zip(pauli_word.name, pauli_word.wires): wire_idx = wire_map[wire_label] pauli_string[wire_idx] = character_map[name] return "".join(pauli_string)
[docs]def string_to_pauli_word(pauli_string, wire_map=None): """Convert a string in terms of ``'I'``, ``'X'``, ``'Y'``, and ``'Z'`` into a Pauli word for the given wire map. Args: pauli_string (str): A string of characters consisting of ``'I'``, ``'X'``, ``'Y'``, and ``'Z'`` indicating a Pauli word. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: .Observable: The Pauli word representing of ``pauli_string`` on the wires enumerated in the wire map. **Example** >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> string_to_pauli_word('XIY', wire_map=wire_map) PauliX(wires=['a']) @ PauliY(wires=['c']) """ character_map = {"I": Identity, "X": PauliX, "Y": PauliY, "Z": PauliZ} if not isinstance(pauli_string, str): raise TypeError(f"Input to string_to_pauli_word must be string, obtained {pauli_string}") # String can only consist of I, X, Y, Z if any(char not in character_map for char in pauli_string): raise ValueError( "Invalid characters encountered in string_to_pauli_word " f"string {pauli_string}. Permitted characters are 'I', 'X', 'Y', and 'Z'" ) # If no wire map is provided, construct one using integers based on the length of the string if wire_map is None: wire_map = {x: x for x in range(len(pauli_string))} if len(pauli_string) != len(wire_map): raise ValueError( "Wire map and pauli_string must have the same length to convert " "from string to Pauli word." ) # Special case: all-identity Pauli if pauli_string == "I" * len(wire_map): first_wire = list(wire_map)[0] return Identity(first_wire) pauli_word = None for wire_name, wire_idx in wire_map.items(): pauli_char = pauli_string[wire_idx] # Don't care about the identity if pauli_char == "I": continue if pauli_word is not None: pauli_word = pauli_word @ character_map[pauli_char](wire_name) else: pauli_word = character_map[pauli_char](wire_name) return pauli_word
[docs]def pauli_word_to_matrix(pauli_word, wire_map=None): """Convert a Pauli word from a tensor to its matrix representation. The matrix representation of a Pauli word has dimension :math:`2^n \\times 2^n`, where :math:`n` is the number of qubits provided in ``wire_map``. For wires that the Pauli word does not act on, identities must be inserted into the tensor product at the correct positions. Args: pauli_word (Observable): an observable, either a :class:`~.Tensor` instance or single-qubit observable representing a Pauli group element. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: array[complex]: The matrix representation of the multi-qubit Pauli over the specified wire map. Raises: TypeError: if the input observable is not a proper Pauli word. **Example** >>> wire_map = {'a' : 0, 'b' : 1} >>> pauli_word = qml.PauliX('a') @ qml.PauliY('b') >>> pauli_word_to_matrix(pauli_word, wire_map=wire_map) array([[0.+0.j, 0.-0.j, 0.+0.j, 0.-1.j], [0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j], [0.+0.j, 0.-1.j, 0.+0.j, 0.-0.j], [0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j]]) """ if not is_pauli_word(pauli_word): raise TypeError(f"Expected Pauli word observables, instead got {pauli_word}") # If there is no wire map, we must infer from the structure of Paulis if wire_map is None: wire_map = {pauli_word.wires.labels[i]: i for i in range(len(pauli_word.wires))} n_qubits = len(wire_map) # If there is only a single qubit, we can return the matrix directly if n_qubits == 1: return pauli_word.matrix() # There may be more than one qubit in the Pauli but still only # one of them with anything acting on it, so take that into account pauli_names = [pauli_word.name] if isinstance(pauli_word.name, str) else pauli_word.name # Special case: the identity Pauli if pauli_names == ["Identity"]: return np.eye(2**n_qubits) # If there is more than one qubit, we must go through the wire map wire # by wire and pick out the relevant matrices pauli_mats = [ID_MAT for x in range(n_qubits)] for wire_label, wire_idx in wire_map.items(): if wire_label in pauli_word.wires.labels: op_idx = pauli_word.wires.labels.index(wire_label) # compute_matrix() only works because we work with Paulis here pauli_mats[wire_idx] = getattr(qml, pauli_names[op_idx]).compute_matrix() return reduce(np.kron, pauli_mats)
[docs]def is_qwc(pauli_vec_1, pauli_vec_2): """Checks if two Pauli words in the binary vector representation are qubit-wise commutative. Args: pauli_vec_1 (Union[list, tuple, array]): first binary vector argument in qubit-wise commutator pauli_vec_2 (Union[list, tuple, array]): second binary vector argument in qubit-wise commutator Returns: bool: returns True if the input Pauli words are qubit-wise commutative, returns False otherwise Raises: ValueError: if the input vectors are of different dimension, if the vectors are not of even dimension, or if the vector components are not strictly binary **Example** >>> is_qwc([1,0,0,1,1,0],[1,0,1,0,1,0]) False >>> is_qwc([1,0,1,1,1,0],[1,0,0,1,1,0]) True """ if isinstance(pauli_vec_1, (list, tuple)): pauli_vec_1 = np.asarray(pauli_vec_1) if isinstance(pauli_vec_2, (list, tuple)): pauli_vec_2 = np.asarray(pauli_vec_2) if len(pauli_vec_1) != len(pauli_vec_2): raise ValueError( f"Vectors a and b must be the same dimension, instead got " f"shapes {np.shape(pauli_vec_1)} and {np.shape(pauli_vec_2)}." ) if len(pauli_vec_1) % 2 != 0: raise ValueError( f"Symplectic vector-space must have even dimension, instead got vectors of shape {np.shape(pauli_vec_1)}." ) if not ( np.array_equal(pauli_vec_1, pauli_vec_1.astype(bool)) and np.array_equal(pauli_vec_2, pauli_vec_2.astype(bool)) ): raise ValueError( f"Vectors a and b must have strictly binary components, instead got {pauli_vec_1} and {pauli_vec_2}" ) n_qubits = int(len(pauli_vec_1) / 2) for i in range(n_qubits): first_vec_ith_qubit_paulix = pauli_vec_1[i] first_vec_ith_qubit_pauliz = pauli_vec_1[n_qubits + i] second_vec_ith_qubit_paulix = pauli_vec_2[i] second_vec_ith_qubit_pauliz = pauli_vec_2[n_qubits + i] first_vec_qubit_i_is_identity = ( first_vec_ith_qubit_paulix == first_vec_ith_qubit_pauliz == 0 ) second_vec_qubit_i_is_identity = ( second_vec_ith_qubit_paulix == second_vec_ith_qubit_pauliz == 0 ) both_vecs_qubit_i_have_same_x = first_vec_ith_qubit_paulix == second_vec_ith_qubit_paulix both_vecs_qubit_i_have_same_z = first_vec_ith_qubit_pauliz == second_vec_ith_qubit_pauliz if not ( ((first_vec_qubit_i_is_identity) or (second_vec_qubit_i_is_identity)) or ((both_vecs_qubit_i_have_same_x) and (both_vecs_qubit_i_have_same_z)) ): return False return True
[docs]def are_pauli_words_qwc(lst_pauli_words): """Given a list of observables assumed to be valid Pauli words, determine if they are pairwise qubit-wise commuting. This implementation has time complexity ~ O(m * n) for m Pauli words and n wires, where n is the number of distinct wire labels used to represent the Pauli words. Args: lst_pauli_words (list[Observable]): List of observables (assumed to be valid Pauli words). Returns: (bool): True if they are all qubit-wise commuting, false otherwise. """ latest_op_name_per_wire = {} for op in lst_pauli_words: # iterate over the list of observables op_names = [op.name] if not isinstance(op.name, list) else op.name op_wires = op.wires.tolist() for op_name, wire in zip(op_names, op_wires): # iterate over wires of the observable, try: if latest_op_name_per_wire[wire] != op_name and ( op_name != "Identity" and latest_op_name_per_wire[wire] != "Identity" ): return False if latest_op_name_per_wire[wire] == "Identity": latest_op_name_per_wire[wire] = op_name # update name except KeyError: latest_op_name_per_wire[wire] = op_name # add wire and name for the first time return True # if we get through all ops, then they are qwc!
[docs]def observables_to_binary_matrix(observables, n_qubits=None, wire_map=None): """Converts a list of Pauli words to the binary vector representation and yields a row matrix of the binary vectors. The dimension of the binary vectors will be implied from the highest wire being acted on non-trivially by the Pauli words in observables. Args: observables (list[Union[Identity, PauliX, PauliY, PauliZ, Tensor]]): the list of Pauli words n_qubits (int): number of qubits to specify dimension of binary vector representation wire_map (dict): dictionary containing all wire labels used in the Pauli words as keys, and unique integer labels as their values Returns: array[array[int]]: a matrix whose rows are Pauli words in binary vector representation **Example** >>> observables_to_binary_matrix([PauliX(0) @ PauliY(2), PauliZ(0) @ PauliZ(1) @ PauliZ(2)]) array([[1., 1., 0., 0., 1., 0.], [0., 0., 0., 1., 1., 1.]]) """ m_cols = len(observables) if wire_map is None: all_wires = Wires.all_wires([pauli_word.wires for pauli_word in observables]) wire_map = {i: c for c, i in enumerate(all_wires)} n_qubits_min = max(wire_map.values()) + 1 if n_qubits is None: n_qubits = n_qubits_min elif n_qubits < n_qubits_min: raise ValueError( f"n_qubits must support the highest mapped wire index {n_qubits_min}," f" instead got n_qubits={n_qubits}." ) binary_mat = np.zeros((m_cols, 2 * n_qubits)) for i in range(m_cols): binary_mat[i, :] = pauli_to_binary(observables[i], n_qubits=n_qubits, wire_map=wire_map) return binary_mat
[docs]def qwc_complement_adj_matrix(binary_observables): """Obtains the adjacency matrix for the complementary graph of the qubit-wise commutativity graph for a given set of observables in the binary representation. The qubit-wise commutativity graph for a set of Pauli words has a vertex for each Pauli word, and two nodes are connected if and only if the corresponding Pauli words are qubit-wise commuting. Args: binary_observables (array[array[int]]): a matrix whose rows are the Pauli words in the binary vector representation Returns: array[array[int]]: the adjacency matrix for the complement of the qubit-wise commutativity graph Raises: ValueError: if input binary observables contain components which are not strictly binary **Example** >>> binary_observables array([[1., 0., 1., 0., 0., 1.], [0., 1., 1., 1., 0., 1.], [0., 0., 0., 1., 0., 0.]]) >>> qwc_complement_adj_matrix(binary_observables) array([[0., 1., 1.], [1., 0., 0.], [1., 0., 0.]]) """ if isinstance(binary_observables, (list, tuple)): binary_observables = np.asarray(binary_observables) if not np.array_equal(binary_observables, binary_observables.astype(bool)): raise ValueError(f"Expected a binary array, instead got {binary_observables}") m_terms = np.shape(binary_observables)[0] adj = np.zeros((m_terms, m_terms)) for i in range(m_terms): for j in range(i + 1, m_terms): adj[i, j] = int(not is_qwc(binary_observables[i], binary_observables[j])) adj[j, i] = adj[i, j] return adj
# from grouping/pauli.py ------------------------ def _pauli_group_generator(n_qubits, wire_map=None): """Generator function for the Pauli group. This function is called by ``pauli_group`` in order to actually generate the group elements. They are split so that the outer function can handle input validation, while this generator is responsible for performing the actual operations. Args: n_qubits (int): The number of qubits for which to create the group. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, wires will be labeled by consecutive integers between :math:`0` and ``n_qubits``. Returns: .Operation: The next Pauli word in the group. """ element_idx = 0 if not wire_map: wire_map = {wire_idx: wire_idx for wire_idx in range(n_qubits)} while element_idx < 4**n_qubits: binary_string = format(element_idx, f"#0{2*n_qubits+2}b")[2:] binary_vector = [float(b) for b in binary_string] yield binary_to_pauli(binary_vector, wire_map=wire_map) element_idx += 1
[docs]def pauli_group(n_qubits, wire_map=None): """Generate the :math:`n`-qubit Pauli group. This function enables the construction of the :math:`n`-qubit Pauli group with no storage involved. The :math:`n`-qubit Pauli group has size :math:`4^n`, thus it may not be desirable to construct it in full and store. The order of iteration is based on the binary symplectic representation of the Pauli group as :math:`2n`-bit strings. Ordering is done by converting the integers :math:`0` to :math:`2^{2n}` to binary strings, and converting those strings to Pauli operators using the :func:`~.binary_to_pauli` method. Args: n_qubits (int): The number of qubits for which to create the group. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, wires will be labeled by integers between 0 and ``n_qubits``. Returns: .Operation: The next Pauli word in the group. **Example** The ``pauli_group`` generator can be used to loop over the Pauli group as follows. (Note: in the example below, we display only the first 5 elements for brevity.) >>> from pennylane.pauli import pauli_group >>> n_qubits = 3 >>> for p in pauli_group(n_qubits): ... print(p) ... Identity(wires=[0]) PauliZ(wires=[2]) PauliZ(wires=[1]) PauliZ(wires=[1]) @ PauliZ(wires=[2]) PauliZ(wires=[0]) The full Pauli group can then be obtained like so: >>> full_pg = list(pauli_group(n_qubits)) The group can also be created using a custom wire map; if no map is specified, a default map of label :math:`i` to wire ``i`` as in the example above will be created. (Note: in the example below, we display only the first 5 elements for brevity.) >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> for p in pauli_group(n_qubits, wire_map=wire_map): ... print(p) ... Identity(wires=['a']) PauliZ(wires=['c']) PauliZ(wires=['b']) PauliZ(wires=['b']) @ PauliZ(wires=['c']) PauliZ(wires=['a']) """ # Cover the case where n_qubits may be passed as a float if isinstance(n_qubits, float): if n_qubits.is_integer(): n_qubits = int(n_qubits) # If not an int, or a float representing a int, raise an error if not isinstance(n_qubits, int): raise TypeError("Must specify an integer number of qubits to construct the Pauli group.") if n_qubits <= 0: raise ValueError("Number of qubits must be at least 1 to construct Pauli group.") return _pauli_group_generator(n_qubits, wire_map=wire_map)
[docs]def pauli_mult(pauli_1, pauli_2, wire_map=None): """Multiply two Pauli words together and return the product as a Pauli word. Two Pauli operations can be multiplied together by taking the additive OR of their binary symplectic representations. Args: pauli_1 (.Operation): A Pauli word. pauli_2 (.Operation): A Pauli word to multiply with the first one. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, the map will be constructed from the set of wires acted on by the input Pauli words. Returns: .Operation: The product of pauli_1 and pauli_2 as a Pauli word (ignoring the global phase). **Example** This function enables multiplication of Pauli group elements at the level of Pauli words, rather than matrices. For example, >>> from pennylane.pauli import pauli_mult >>> pauli_1 = qml.PauliX(0) @ qml.PauliZ(1) >>> pauli_2 = qml.PauliY(0) @ qml.PauliZ(1) >>> product = pauli_mult(pauli_1, pauli_2) >>> print(product) PauliZ(wires=[0]) """ if wire_map is None: wire_map = _wire_map_from_pauli_pair(pauli_1, pauli_2) # Check if pauli_1 and pauli_2 are the same; if so, the result is the Identity if are_identical_pauli_words(pauli_1, pauli_2): first_wire = list(pauli_1.wires)[0] return Identity(first_wire) # Compute binary symplectic representations pauli_1_binary = pauli_to_binary(pauli_1, wire_map=wire_map) pauli_2_binary = pauli_to_binary(pauli_2, wire_map=wire_map) bin_symp_1 = np.array([int(x) for x in pauli_1_binary]) bin_symp_2 = np.array([int(x) for x in pauli_2_binary]) # Shorthand for bitwise XOR of numpy arrays pauli_product = bin_symp_1 ^ bin_symp_2 return binary_to_pauli(pauli_product, wire_map=wire_map)
[docs]def pauli_mult_with_phase(pauli_1, pauli_2, wire_map=None): r"""Multiply two Pauli words together, and return both their product as a Pauli word and the global phase. Two Pauli operations can be multiplied together by taking the additive OR of their binary symplectic representations. The phase is computed by looking at the number of times we have the products :math:`XY, YZ`, or :math:`ZX` (adds a phase of :math:`i`), or :math:`YX, ZY, XZ` (adds a phase of :math:`-i`). Args: pauli_1 (.Operation): A Pauli word. pauli_2 (.Operation): A Pauli word to multiply with the first one. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, the map will be constructed from the set of wires acted on by the input Pauli words. Returns: tuple[.Operation, complex]: The product of ``pauli_1`` and ``pauli_2``, and the global phase. **Example** This function works the same as :func:`~.pauli_mult` but also returns the global phase accumulated as a result of the ordering of Paulis in the product (e.g., :math:`XY = iZ`, and :math:`YX = -iZ`). >>> from pennylane.pauli import pauli_mult_with_phase >>> pauli_1 = qml.PauliX(0) @ qml.PauliZ(1) >>> pauli_2 = qml.PauliY(0) @ qml.PauliZ(1) >>> product, phase = pauli_mult_with_phase(pauli_1, pauli_2) >>> product PauliZ(wires=[0]) >>> phase 1j """ if wire_map is None: wire_map = _wire_map_from_pauli_pair(pauli_1, pauli_2) # Get the product; use our earlier function pauli_product = pauli_mult(pauli_1, pauli_2, wire_map) # Get the names of the operations; in cases where only one single-qubit Pauli # is present, the operation name is stored as a string rather than a list, so convert it pauli_1_string = pauli_word_to_string(pauli_1, wire_map=wire_map) pauli_2_string = pauli_word_to_string(pauli_2, wire_map=wire_map) pos_phases = (("X", "Y"), ("Y", "Z"), ("Z", "X")) phase = 1 for qubit_1_char, qubit_2_char in zip(pauli_1_string, pauli_2_string): # If we have identities anywhere we don't pick up a phase if qubit_1_char == "I" or qubit_2_char == "I": continue # Likewise, no additional phase if the Paulis are the same if qubit_1_char == qubit_2_char: continue # Use Pauli commutation rules to determine the phase if (qubit_1_char, qubit_2_char) in pos_phases: phase *= 1j else: phase *= -1j return pauli_product, phase
[docs]@lru_cache() def partition_pauli_group(n_qubits: int) -> List[List[str]]: """Partitions the :math:`n`-qubit Pauli group into qubit-wise commuting terms. The :math:`n`-qubit Pauli group is composed of :math:`4^{n}` terms that can be partitioned into :math:`3^{n}` qubit-wise commuting groups. Args: n_qubits (int): number of qubits Returns: List[List[str]]: A collection of qubit-wise commuting groups containing Pauli words as strings **Example** >>> qml.pauli.partition_pauli_group(3) [['III', 'IIZ', 'IZI', 'IZZ', 'ZII', 'ZIZ', 'ZZI', 'ZZZ'], ['IIX', 'IZX', 'ZIX', 'ZZX'], ['IIY', 'IZY', 'ZIY', 'ZZY'], ['IXI', 'IXZ', 'ZXI', 'ZXZ'], ['IXX', 'ZXX'], ['IXY', 'ZXY'], ['IYI', 'IYZ', 'ZYI', 'ZYZ'], ['IYX', 'ZYX'], ['IYY', 'ZYY'], ['XII', 'XIZ', 'XZI', 'XZZ'], ['XIX', 'XZX'], ['XIY', 'XZY'], ['XXI', 'XXZ'], ['XXX'], ['XXY'], ['XYI', 'XYZ'], ['XYX'], ['XYY'], ['YII', 'YIZ', 'YZI', 'YZZ'], ['YIX', 'YZX'], ['YIY', 'YZY'], ['YXI', 'YXZ'], ['YXX'], ['YXY'], ['YYI', 'YYZ'], ['YYX'], ['YYY']] """ # Cover the case where n_qubits may be passed as a float if isinstance(n_qubits, float): if n_qubits.is_integer(): n_qubits = int(n_qubits) # If not an int, or a float representing a int, raise an error if not isinstance(n_qubits, int): raise TypeError("Must specify an integer number of qubits.") if n_qubits < 0: raise ValueError("Number of qubits must be at least 0.") if n_qubits == 0: return [[""]] strings = set() # tracks all the strings that have already been grouped groups = [] # We know that I and Z always commute on a given qubit. The following generates all product # sequences of len(n_qubits) over "FXYZ", with F indicating a free slot that can be swapped for # the product over I and Z, and all other terms fixed to the given X/Y/Z. For example, if # ``n_qubits = 3`` our first value for ``string`` will be ``('F', 'F', 'F')``. We then expand # the product of I and Z over the three free slots, giving # ``['III', 'IIZ', 'IZI', 'IZZ', 'ZII', 'ZIZ', 'ZZI', 'ZZZ']``, which is our first group. The # next element of ``string`` will be ``('F', 'F', 'X')`` which we use to generate our second # group ``['IIX', 'IZX', 'ZIX', 'ZZX']``. for string in product("FXYZ", repeat=n_qubits): if string not in strings: num_free_slots = string.count("F") group = [] commuting = product("IZ", repeat=num_free_slots) for commuting_string in commuting: commuting_string = list(commuting_string) new_string = tuple(commuting_string.pop(0) if s == "F" else s for s in string) if new_string not in strings: # only add if string has not already been grouped group.append("".join(new_string)) strings |= {new_string} if len(group) > 0: groups.append(group) return groups
# from grouping/transformations.py --------------
[docs]def qwc_rotation(pauli_operators): """Performs circuit implementation of diagonalizing unitary for a Pauli word. Args: pauli_operators (list[Union[PauliX, PauliY, PauliZ, Identity]]): Single-qubit Pauli operations. No Pauli operations in this list may be acting on the same wire. Raises: TypeError: if any elements of ``pauli_operators`` are not instances of :class:`~.PauliX`, :class:`~.PauliY`, :class:`~.PauliZ`, or :class:`~.Identity` **Example** >>> pauli_operators = [qml.PauliX('a'), qml.PauliY('b'), qml.PauliZ('c')] >>> qwc_rotation(pauli_operators) [RY(-1.5707963267948966, wires=['a']), RX(1.5707963267948966, wires=['b'])] """ paulis_with_identity = (qml.Identity, qml.PauliX, qml.PauliY, qml.PauliZ) if not all(isinstance(element, paulis_with_identity) for element in pauli_operators): raise TypeError( f"All values of input pauli_operators must be either Identity, PauliX, PauliY, or PauliZ instances," f" instead got pauli_operators = {pauli_operators}." ) with OperationRecorder() as rec: for pauli in pauli_operators: if isinstance(pauli, qml.PauliX): qml.RY(-np.pi / 2, wires=pauli.wires) elif isinstance(pauli, qml.PauliY): qml.RX(np.pi / 2, wires=pauli.wires) # known issue with pylint recognizing @property members return rec.queue # pylint:disable=no-member
[docs]def diagonalize_pauli_word(pauli_word): """Transforms the Pauli word to diagonal form in the computational basis. Args: pauli_word (Observable): the Pauli word to diagonalize in computational basis Returns: Observable: the Pauli word diagonalized in the computational basis Raises: TypeError: if the input is not a Pauli word, i.e., a Pauli operator, :class:`~.Identity`, or :class:`~.Tensor` instances thereof **Example** >>> diagonalize_pauli_word(qml.PauliX('a') @ qml.PauliY('b') @ qml.PauliZ('c')) PauliZ(wires=['a']) @ PauliZ(wires=['b']) @ PauliZ(wires=['c']) """ if not is_pauli_word(pauli_word): raise TypeError(f"Input must be a Pauli word, instead got: {pauli_word}.") paulis_with_identity = (qml.PauliX, qml.PauliY, qml.PauliZ, qml.Identity) diag_term = None if isinstance(pauli_word, Tensor): for sigma in pauli_word.obs: if sigma.name != "Identity": if diag_term is None: diag_term = qml.PauliZ(wires=sigma.wires) else: diag_term @= qml.PauliZ(wires=sigma.wires) elif isinstance(pauli_word, paulis_with_identity): sigma = pauli_word if sigma.name != "Identity": diag_term = qml.PauliZ(wires=sigma.wires) if diag_term is None: diag_term = qml.Identity(pauli_word.wires.tolist()[0]) return diag_term
[docs]def diagonalize_qwc_pauli_words( qwc_grouping, ): # pylint: disable=too-many-branches, isinstance-second-argument-not-valid-type """Diagonalizes a list of mutually qubit-wise commutative Pauli words. Args: qwc_grouping (list[Observable]): a list of observables containing mutually qubit-wise commutative Pauli words Returns: tuple: * list[Operation]: an instance of the qwc_rotation template which diagonalizes the qubit-wise commuting grouping * list[Observable]: list of Pauli string observables diagonal in the computational basis Raises: ValueError: if any 2 elements in the input QWC grouping are not qubit-wise commutative **Example** >>> qwc_group = [qml.PauliX(0) @ qml.PauliZ(1), qml.PauliX(0) @ qml.PauliY(3), qml.PauliZ(1) @ qml.PauliY(3)] >>> diagonalize_qwc_pauli_words(qwc_group) ([RY(-1.5707963267948966, wires=[0]), RX(1.5707963267948966, wires=[3])], [PauliZ(wires=[0]) @ PauliZ(wires=[1]), PauliZ(wires=[0]) @ PauliZ(wires=[3]), PauliZ(wires=[1]) @ PauliZ(wires=[3])]) """ if not are_pauli_words_qwc(qwc_grouping): raise ValueError("The list of Pauli words are not qubit-wise commuting.") if not all(isinstance(op, (Tensor, PauliX, PauliY, PauliZ, Identity)) for op in qwc_grouping): raise ValueError("This function only supports Tensor products of pauli ops.") pauli_operators = [] diag_terms = [] paulis_with_identity = (qml.PauliX, qml.PauliY, qml.PauliZ, qml.Identity) for term in qwc_grouping: diag_terms.append(diagonalize_pauli_word(term)) if isinstance(term, Tensor): for sigma in term.obs: if sigma.name != "Identity": if not any( are_identical_pauli_words(sigma, existing_pauli) for existing_pauli in pauli_operators ): pauli_operators.append(sigma) elif isinstance(term, paulis_with_identity): sigma = term if sigma.name != "Identity": if not any( are_identical_pauli_words(sigma, existing_pauli) for existing_pauli in pauli_operators ): pauli_operators.append(sigma) unitary = qwc_rotation(pauli_operators) return unitary, diag_terms
[docs]def diagonalize_qwc_groupings(qwc_groupings): """Diagonalizes a list of qubit-wise commutative groupings of Pauli strings. Args: qwc_groupings (list[list[Observable]]): a list of mutually qubit-wise commutative groupings of Pauli string observables Returns: tuple: * list[list[Operation]]: a list of instances of the qwc_rotation template which diagonalizes the qubit-wise commuting grouping, order corresponding to qwc_groupings * list[list[Observable]]: a list of QWC groupings diagonalized in the computational basis, order corresponding to qwc_groupings **Example** >>> qwc_group_1 = [qml.PauliX(0) @ qml.PauliZ(1), qml.PauliX(0) @ qml.PauliY(3), qml.PauliZ(1) @ qml.PauliY(3)] >>> qwc_group_2 = [qml.PauliY(0), qml.PauliY(0) @ qml.PauliX(2), qml.PauliX(1) @ qml.PauliZ(3)] >>> post_rotations, diag_groupings = diagonalize_qwc_groupings([qwc_group_1, qwc_group_2]) >>> post_rotations [[RY(-1.5707963267948966, wires=[0]), RX(1.5707963267948966, wires=[3])], [RX(1.5707963267948966, wires=[0]), RY(-1.5707963267948966, wires=[2]), RY(-1.5707963267948966, wires=[1])]] >>> diag_groupings [[PauliZ(wires=[0]) @ PauliZ(wires=[1]), PauliZ(wires=[0]) @ PauliZ(wires=[3]), PauliZ(wires=[1]) @ PauliZ(wires=[3])], [PauliZ(wires=[0]), PauliZ(wires=[0]) @ PauliZ(wires=[2]), PauliZ(wires=[1]) @ PauliZ(wires=[3])]] """ post_rotations = [] diag_groupings = [] m_groupings = len(qwc_groupings) for i in range(m_groupings): diagonalizing_unitary, diag_grouping = diagonalize_qwc_pauli_words(qwc_groupings[i]) post_rotations.append(diagonalizing_unitary) diag_groupings.append(diag_grouping) return post_rotations, diag_groupings
# from observable_hf.py -------------------------
[docs]def simplify(h, cutoff=1.0e-12): r"""Add together identical terms in the Hamiltonian. The Hamiltonian terms with identical Pauli words are added together and eliminated if the overall coefficient is smaller than a cutoff value. Args: h (Hamiltonian): PennyLane Hamiltonian cutoff (float): cutoff value for discarding the negligible terms Returns: Hamiltonian: Simplified PennyLane Hamiltonian **Example** >>> c = np.array([0.5, 0.5]) >>> h = qml.Hamiltonian(c, [qml.PauliX(0) @ qml.PauliY(1), qml.PauliX(0) @ qml.PauliY(1)]) >>> print(simplify(h)) (1.0) [X0 Y1] """ wiremap = dict(zip(h.wires, range(len(h.wires) + 1))) c, o = [], [] for i, op in enumerate(h.ops): op = qml.operation.Tensor(op).prune() op = qml.pauli.pauli_word_to_string(op, wire_map=wiremap) if op not in o: c.append(h.coeffs[i]) o.append(op) else: c[o.index(op)] += h.coeffs[i] coeffs, ops = [], [] nonzero_ind = np.argwhere(abs(np.array(c)) > cutoff).flatten() for i in nonzero_ind: coeffs.append(c[i]) ops.append(qml.pauli.string_to_pauli_word(o[i], wire_map=wiremap)) try: coeffs = qml.math.stack(coeffs) except ValueError: pass return qml.Hamiltonian(np.array(coeffs), ops)
def _pauli_mult(p1, p2): r"""Return the result of multiplication between two tensor products of Pauli operators. The Pauli operator :math:`(P_0)` is denoted by [(0, 'P')], where :math:`P` represents :math:`X`, :math:`Y` or :math:`Z`. Args: p1 (list[tuple[int, str]]): the first tensor product of Pauli operators p2 (list[tuple[int, str]]): the second tensor product of Pauli operators Returns tuple(list[tuple[int, str]], complex): list of the Pauli operators and the coefficient **Example** >>> p1 = [(0, "X"), (1, "Y")] # X_0 @ Y_1 >>> p2 = [(0, "X"), (2, "Y")] # X_0 @ Y_2 >>> _pauli_mult(p1, p2) ([(2, "Y"), (1, "Y")], 1.0) # p1 @ p2 = X_0 @ Y_1 @ X_0 @ Y_2 """ c = 1.0 t1 = [t[0] for t in p1] t2 = [t[0] for t in p2] k = [] for i in p1: if i[0] in t1 and i[0] not in t2: k.append((i[0], pauli_mult_dict[i[1]])) for j in p2: if j[0] in t2 and j[0] not in t1: k.append((j[0], pauli_mult_dict[j[1]])) if i[0] == j[0]: if i[1] + j[1] in pauli_coeff: k.append((i[0], pauli_mult_dict[i[1] + j[1]])) c = c * pauli_coeff[i[1] + j[1]] else: k.append((i[0], pauli_mult_dict[i[1] + j[1]])) k = [i for i in k if "I" not in i[1]] for item in k: k_ = [i for i, x in enumerate(k) if x == item] if len(k_) >= 2: for j in k_[::-1][:-1]: del k[j] return k, c pauli_mult_dict = { "XX": "I", "YY": "I", "ZZ": "I", "ZX": "Y", "XZ": "Y", "ZY": "X", "YZ": "X", "XY": "Z", "YX": "Z", "IX": "X", "IY": "Y", "IZ": "Z", "XI": "X", "YI": "Y", "ZI": "Z", "I": "I", "II": "I", "X": "X", "Y": "Y", "Z": "Z", } pauli_coeff = { "ZX": 1.0j, "XZ": -1.0j, "ZY": -1.0j, "YZ": 1.0j, "XY": 1.0j, "YX": -1.0j, } # from tapering.py ------------------------------ def _binary_matrix(terms, num_qubits, wire_map=None): r"""Get a binary matrix representation of the Hamiltonian where each row corresponds to a Pauli term, which is represented by a concatenation of Z and X vectors. Args: terms (Iterable[Observable]): operators defining the Hamiltonian num_qubits (int): number of wires required to define the Hamiltonian wire_map (dict): dictionary containing all wire labels used in the Pauli words as keys, and unique integer labels as their values Returns: array[int]: binary matrix representation of the Hamiltonian of shape :math:`len(terms) \times 2*num_qubits` **Example** >>> wire_map = {'a':0, 'b':1, 'c':2, 'd':3} >>> terms = [qml.PauliZ(wires=['a']) @ qml.PauliX(wires=['b']), ... qml.PauliZ(wires=['a']) @ qml.PauliY(wires=['c']), ... qml.PauliX(wires=['a']) @ qml.PauliY(wires=['d'])] >>> _binary_matrix(terms, 4, wire_map=wire_map) array([[1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1, 1, 0, 0, 1]]) """ if wire_map is None: all_wires = qml.wires.Wires.all_wires([term.wires for term in terms], sort=True) wire_map = {i: c for c, i in enumerate(all_wires)} binary_matrix = np.zeros((len(terms), 2 * num_qubits), dtype=int) for idx, term in enumerate(terms): ops, wires = term.name, term.wires if len(wires) == 1: ops = [ops] for op, wire in zip(ops, wires): if op in ["PauliX", "PauliY"]: binary_matrix[idx][wire_map[wire] + num_qubits] = 1 if op in ["PauliZ", "PauliY"]: binary_matrix[idx][wire_map[wire]] = 1 return binary_matrix