# Copyright 2021 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.r"""Functionality for finding the maximum weighted cycle of directed graphs."""# pylint: disable=unnecessary-comprehension, unnecessary-lambda-assignmentimportitertoolsfromcollections.abcimportIterablefromtypingimportUnionimportnetworkxasnximportnumpyasnp# pylint: disable=wrong-import-orderimportrustworkxasrximportpennylaneasqml
[docs]defedges_to_wires(graph:Union[nx.Graph,rx.PyGraph,rx.PyDiGraph])->dict[tuple,int]:r"""Maps the edges of a graph to corresponding wires. **Example** >>> g = nx.complete_graph(4).to_directed() >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} Args: graph (nx.Graph or rx.PyGraph or rx.PyDiGraph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from graph edges to wires """ifisinstance(graph,nx.Graph):return{edge:ifori,edgeinenumerate(graph.edges)}ifisinstance(graph,(rx.PyGraph,rx.PyDiGraph)):gnodes=graph.nodes()return{(gnodes.index(e[0]),gnodes.index(e[1])):ifori,einenumerate(sorted(graph.edge_list()))}raiseValueError(f"Input graph must be a nx.Graph or rx.PyGraph or rx.PyDiGraph, got {type(graph).__name__}")
[docs]defwires_to_edges(graph:Union[nx.Graph,rx.PyGraph,rx.PyDiGraph])->dict[int,tuple]:r"""Maps the wires of a register of qubits to corresponding edges. **Example** >>> g = nx.complete_graph(4).to_directed() >>> wires_to_edges(g) {0: (0, 1), 1: (0, 2), 2: (0, 3), 3: (1, 0), 4: (1, 2), 5: (1, 3), 6: (2, 0), 7: (2, 1), 8: (2, 3), 9: (3, 0), 10: (3, 1), 11: (3, 2)} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> wires_to_edges(g) {0: (0, 1), 1: (0, 2), 2: (0, 3), 3: (1, 0), 4: (1, 2), 5: (1, 3), 6: (2, 0), 7: (2, 1), 8: (2, 3), 9: (3, 0), 10: (3, 1), 11: (3, 2)} Args: graph (nx.Graph or rx.PyGraph or rx.PyDiGraph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from wires to graph edges """ifisinstance(graph,nx.Graph):return{i:edgefori,edgeinenumerate(graph.edges)}ifisinstance(graph,(rx.PyGraph,rx.PyDiGraph)):gnodes=graph.nodes()return{i:(gnodes.index(e[0]),gnodes.index(e[1]))fori,einenumerate(sorted(graph.edge_list()))}raiseValueError(f"Input graph must be a nx.Graph or rx.PyGraph or rx.PyDiGraph, got {type(graph).__name__}")
[docs]defcycle_mixer(graph:Union[nx.DiGraph,rx.PyDiGraph])->qml.operation.Operator:r"""Calculates the cycle-mixer Hamiltonian. Following methods outlined `here <https://arxiv.org/abs/1709.03489>`__, the cycle-mixer Hamiltonian preserves the set of valid cycles: .. math:: \frac{1}{4}\sum_{(i, j)\in E} \left(\sum_{k \in V, k\neq i, k\neq j, (i, k) \in E, (k, j) \in E} \left[X_{ij}X_{ik}X_{kj} +Y_{ij}Y_{ik}X_{kj} + Y_{ij}X_{ik}Y_{kj} - X_{ij}Y_{ik}Y_{kj}\right] \right) where :math:`E` are the edges of the directed graph. A valid cycle is defined as a subset of edges in :math:`E` such that all of the graph's nodes :math:`V` have zero net flow (see the :func:`~.net_flow_constraint` function). **Example** >>> import networkx as nx >>> g = nx.complete_graph(3).to_directed() >>> h_m = cycle_mixer(g) >>> print(h_m) (-0.25) [X0 Y1 Y5] + (-0.25) [X1 Y0 Y3] + (-0.25) [X2 Y3 Y4] + (-0.25) [X3 Y2 Y1] + (-0.25) [X4 Y5 Y2] + (-0.25) [X5 Y4 Y0] + (0.25) [X0 X1 X5] + (0.25) [Y0 Y1 X5] + (0.25) [Y0 X1 Y5] + (0.25) [X1 X0 X3] + (0.25) [Y1 Y0 X3] + (0.25) [Y1 X0 Y3] + (0.25) [X2 X3 X4] + (0.25) [Y2 Y3 X4] + (0.25) [Y2 X3 Y4] + (0.25) [X3 X2 X1] + (0.25) [Y3 Y2 X1] + (0.25) [Y3 X2 Y1] + (0.25) [X4 X5 X2] + (0.25) [Y4 Y5 X2] + (0.25) [Y4 X5 Y2] + (0.25) [X5 X4 X0] + (0.25) [Y5 Y4 X0] + (0.25) [Y5 X4 Y0] >>> import rustworkx as rx >>> g = rx.generators.directed_mesh_graph(3, [0,1,2]) >>> h_m = cycle_mixer(g) >>> print(h_m) (-0.25) [X0 Y1 Y5] + (-0.25) [X1 Y0 Y3] + (-0.25) [X2 Y3 Y4] + (-0.25) [X3 Y2 Y1] + (-0.25) [X4 Y5 Y2] + (-0.25) [X5 Y4 Y0] + (0.25) [X0 X1 X5] + (0.25) [Y0 Y1 X5] + (0.25) [Y0 X1 Y5] + (0.25) [X1 X0 X3] + (0.25) [Y1 Y0 X3] + (0.25) [Y1 X0 Y3] + (0.25) [X2 X3 X4] + (0.25) [Y2 Y3 X4] + (0.25) [Y2 X3 Y4] + (0.25) [X3 X2 X1] + (0.25) [Y3 Y2 X1] + (0.25) [Y3 X2 Y1] + (0.25) [X4 X5 X2] + (0.25) [Y4 Y5 X2] + (0.25) [Y4 X5 Y2] + (0.25) [X5 X4 X0] + (0.25) [Y5 Y4 X0] + (0.25) [Y5 X4 Y0] Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges Returns: qml.Hamiltonian: the cycle-mixer Hamiltonian """ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")hamiltonian=qml.Hamiltonian([],[])graph_edges=sorted(graph.edge_list())ifisinstance(graph,rx.PyDiGraph)elsegraph.edgesforedgeingraph_edges:hamiltonian+=_partial_cycle_mixer(graph,edge)returnhamiltonian
def_partial_cycle_mixer(graph:Union[nx.DiGraph,rx.PyDiGraph],edge:tuple)->qml.operation.Operator:r"""Calculates the partial cycle-mixer Hamiltonian for a specific edge. For an edge :math:`(i, j)`, this function returns: .. math:: \sum_{k \in V, k\neq i, k\neq j, (i, k) \in E, (k, j) \in E}\left[ X_{ij}X_{ik}X_{kj} + Y_{ij}Y_{ik}X_{kj} + Y_{ij}X_{ik}Y_{kj} - X_{ij}Y_{ik}Y_{kj}\right] Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges edge (tuple): a fixed edge Returns: qml.Hamiltonian: the partial cycle-mixer Hamiltonian """ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")coeffs=[]ops=[]is_rx=isinstance(graph,rx.PyDiGraph)edges_to_qubits=edges_to_wires(graph)graph_nodes=graph.node_indexes()ifis_rxelsegraph.nodesgraph_edges=sorted(graph.edge_list())ifis_rxelsegraph.edges# In RX each node is assigned to an integer index starting from 0;# thus, we use the following lambda function to get node-values.get_nvalues=lambdaT:(graph.nodes().index(T[0]),graph.nodes().index(T[1]))ifis_rxelseTfornodeingraph_nodes:out_edge=(edge[0],node)in_edge=(node,edge[1])ifnodenotinedgeandout_edgeingraph_edgesandin_edgeingraph_edges:wire=edges_to_qubits[get_nvalues(edge)]out_wire=edges_to_qubits[get_nvalues(out_edge)]in_wire=edges_to_qubits[get_nvalues(in_edge)]t=qml.X(wire)@qml.X(out_wire)@qml.X(in_wire)ops.append(t)t=qml.Y(wire)@qml.Y(out_wire)@qml.X(in_wire)ops.append(t)t=qml.Y(wire)@qml.X(out_wire)@qml.Y(in_wire)ops.append(t)t=qml.X(wire)@qml.Y(out_wire)@qml.Y(in_wire)ops.append(t)coeffs.extend([0.25,0.25,0.25,-0.25])returnqml.Hamiltonian(coeffs,ops)
[docs]defloss_hamiltonian(graph:Union[nx.Graph,rx.PyGraph,rx.PyDiGraph])->qml.operation.Operator:r"""Calculates the loss Hamiltonian for the maximum-weighted cycle problem. We consider the problem of selecting a cycle from a graph that has the greatest product of edge weights, as outlined `here <https://1qbit.com/whitepaper/arbitrage/>`__. The product of weights of a subset of edges in a graph is given by .. math:: P = \prod_{(i, j) \in E} [(c_{ij} - 1)x_{ij} + 1] where :math:`E` are the edges of the graph, :math:`x_{ij}` is a binary number that selects whether to include the edge :math:`(i, j)` and :math:`c_{ij}` is the corresponding edge weight. Our objective is to maximize :math:`P`, subject to selecting the :math:`x_{ij}` so that our subset of edges composes a cycle. The product of edge weights is maximized by equivalently considering .. math:: \sum_{(i, j) \in E} x_{ij}\log c_{ij}, assuming :math:`c_{ij} > 0`. This can be restated as a minimization of the expectation value of the following qubit Hamiltonian: .. math:: H = \sum_{(i, j) \in E} Z_{ij}\log c_{ij}. where :math:`Z_{ij}` is a qubit Pauli-Z matrix acting upon the wire specified by the edge :math:`(i, j)`. Mapping from edges to wires can be achieved using :func:`~.edges_to_wires`. .. note:: The expectation value of the returned Hamiltonian :math:`H` is not equal to :math:`P`, but minimizing the expectation value of :math:`H` is equivalent to maximizing :math:`P`. Also note that the returned Hamiltonian does not impose that the selected set of edges is a cycle. This constraint can be enforced using a penalty term or by selecting a QAOA mixer Hamiltonian that only transitions between states that correspond to cycles. **Example** >>> import networkx as nx >>> g = nx.complete_graph(3).to_directed() >>> edge_weight_data = {edge: (i + 1) * 0.5 for i, edge in enumerate(g.edges)} >>> for k, v in edge_weight_data.items(): g[k[0]][k[1]]["weight"] = v >>> h = loss_hamiltonian(g) >>> h ( -0.6931471805599453 * Z(0) + 0.0 * Z(1) + 0.4054651081081644 * Z(2) + 0.6931471805599453 * Z(3) + 0.9162907318741551 * Z(4) + 1.0986122886681098 * Z(5) ) >>> import rustworkx as rx >>> g = rx.generators.directed_mesh_graph(3, [0, 1, 2]) >>> edge_weight_data = {edge: (i + 1) * 0.5 for i, edge in enumerate(sorted(g.edge_list()))} >>> for k, v in edge_weight_data.items(): g.update_edge(k[0], k[1], {"weight": v}) >>> h = loss_hamiltonian(g) >>> print(h) ( -0.6931471805599453 * Z(0) + 0.0 * Z(1) + 0.4054651081081644 * Z(2) + 0.6931471805599453 * Z(3) + 0.9162907318741551 * Z(4) + 1.0986122886681098 * Z(5) ) Args: graph (nx.Graph or rx.PyGraph or rx.PyDiGraph): the graph specifying possible edges Returns: qml.Hamiltonian: the loss Hamiltonian Raises: ValueError: if the graph contains self-loops KeyError: if one or more edges do not contain weight data """ifnotisinstance(graph,(nx.Graph,rx.PyGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.Graph or rx.PyGraph or rx.PyDiGraph, got {type(graph).__name__}")edges_to_qubits=edges_to_wires(graph)coeffs=[]ops=[]is_rx=isinstance(graph,(rx.PyGraph,rx.PyDiGraph))edges_data=sorted(graph.weighted_edge_list())ifis_rxelsegraph.edges(data=True)# In RX each node is assigned to an integer index starting from 0;# thus, we use the following lambda function to get node-values.get_nvalues=lambdaT:(graph.nodes().index(T[0]),graph.nodes().index(T[1]))ifis_rxelseTforedge_datainedges_data:edge=edge_data[:2]ifedge[0]==edge[1]:raiseValueError("Graph contains self-loops")try:weight=edge_data[2]["weight"]exceptKeyErrorase:raiseKeyError(f"Edge {edge} does not contain weight data")fromeexceptTypeErrorase:raiseTypeError(f"Edge {edge} does not contain weight data")fromecoeffs.append(np.log(weight))ops.append(qml.Z(edges_to_qubits[get_nvalues(edge)]))H=qml.Hamiltonian(coeffs,ops)# store the valuable information that all observables are in one commuting groupH.grouping_indices=[list(range(len(H.ops)))]returnH
def_square_hamiltonian_terms(coeffs:Iterable[float],ops:Iterable[qml.operation.Observable])->tuple[list[float],list[qml.operation.Observable]]:"""Calculates the coefficients and observables that compose the squared Hamiltonian. Args: coeffs (Iterable[float]): coeffients of the input Hamiltonian ops (Iterable[qml.operation.Observable]): observables of the input Hamiltonian Returns: Tuple[List[float], List[qml.operation.Observable]]: The list of coefficients and list of observables of the squared Hamiltonian. """squared_coeffs,squared_ops=[],[]pairs=[(coeff,op)forcoeff,opinzip(coeffs,ops)]products=itertools.product(pairs,repeat=2)for(coeff1,op1),(coeff2,op2)inproducts:squared_coeffs.append(coeff1*coeff2)ifisinstance(op1,qml.Identity):squared_ops.append(op2)elifisinstance(op2,qml.Identity):squared_ops.append(op1)# pylint: disable=unidiomatic-typecheckelifop1.wires==op2.wiresandisinstance(op1,type(op2)):squared_ops.append(qml.Identity(0))elifop2.wires[0]<op1.wires[0]:squared_ops.append(op2@op1)else:squared_ops.append(op1@op2)returnsquared_coeffs,squared_ops
[docs]defout_flow_constraint(graph:Union[nx.DiGraph,rx.PyDiGraph])->qml.operation.Operator:r"""Calculates the `out flow constraint <https://1qbit.com/whitepaper/arbitrage/>`__ Hamiltonian for the maximum-weighted cycle problem. Given a subset of edges in a directed graph, the out-flow constraint imposes that at most one edge can leave any given node, i.e., for all :math:`i`: .. math:: \sum_{j,(i,j)\in E}x_{ij} \leq 1, where :math:`E` are the edges of the graph and :math:`x_{ij}` is a binary number that selects whether to include the edge :math:`(i, j)`. A set of edges satisfies the out-flow constraint whenever the following Hamiltonian is minimized: .. math:: \sum_{i\in V}\left(d_{i}^{out}(d_{i}^{out} - 2)\mathbb{I} - 2(d_{i}^{out}-1)\sum_{j,(i,j)\in E}\hat{Z}_{ij} + \left( \sum_{j,(i,j)\in E}\hat{Z}_{ij} \right)^{2}\right) where :math:`V` are the graph vertices, :math:`d_{i}^{\rm out}` is the outdegree of node :math:`i`, and :math:`Z_{ij}` is a qubit Pauli-Z matrix acting upon the qubit specified by the pair :math:`(i, j)`. Mapping from edges to wires can be achieved using :func:`~.edges_to_wires`. Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges Returns: qml.Hamiltonian: the out flow constraint Hamiltonian Raises: ValueError: if the input graph is not directed """ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")ifisinstance(graph,(nx.DiGraph,rx.PyDiGraph))andnothasattr(graph,"out_edges"):raiseValueError("Input graph must be directed")hamiltonian=qml.Hamiltonian([],[])graph_nodes=graph.node_indexes()ifisinstance(graph,rx.PyDiGraph)elsegraph.nodesfornodeingraph_nodes:hamiltonian+=_inner_out_flow_constraint_hamiltonian(graph,node)returnhamiltonian
[docs]defnet_flow_constraint(graph:Union[nx.DiGraph,rx.PyDiGraph])->qml.operation.Operator:r"""Calculates the `net flow constraint <https://doi.org/10.1080/0020739X.2010.526248>`__ Hamiltonian for the maximum-weighted cycle problem. Given a subset of edges in a directed graph, the net-flow constraint imposes that the number of edges leaving any given node is equal to the number of edges entering the node, i.e., .. math:: \sum_{j, (i, j) \in E} x_{ij} = \sum_{j, (j, i) \in E} x_{ji}, for all nodes :math:`i`, where :math:`E` are the edges of the graph and :math:`x_{ij}` is a binary number that selects whether to include the edge :math:`(i, j)`. A set of edges has zero net flow whenever the following Hamiltonian is minimized: .. math:: \sum_{i \in V} \left((d_{i}^{\rm out} - d_{i}^{\rm in})\mathbb{I} - \sum_{j, (i, j) \in E} Z_{ij} + \sum_{j, (j, i) \in E} Z_{ji} \right)^{2}, where :math:`V` are the graph vertices, :math:`d_{i}^{\rm out}` and :math:`d_{i}^{\rm in}` are the outdegree and indegree, respectively, of node :math:`i` and :math:`Z_{ij}` is a qubit Pauli-Z matrix acting upon the wire specified by the pair :math:`(i, j)`. Mapping from edges to wires can be achieved using :func:`~.edges_to_wires`. Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges Returns: qml.Hamiltonian: the net-flow constraint Hamiltonian Raises: ValueError: if the input graph is not directed """ifisinstance(graph,(nx.DiGraph,rx.PyDiGraph))and(nothasattr(graph,"in_edges")ornothasattr(graph,"out_edges")):raiseValueError("Input graph must be directed")ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")hamiltonian=qml.Hamiltonian([],[])graph_nodes=graph.node_indexes()ifisinstance(graph,rx.PyDiGraph)elsegraph.nodesfornodeingraph_nodes:hamiltonian+=_inner_net_flow_constraint_hamiltonian(graph,node)returnhamiltonian
def_inner_out_flow_constraint_hamiltonian(graph:Union[nx.DiGraph,rx.PyDiGraph],node:int)->qml.operation.Operator:r"""Calculates the inner portion of the Hamiltonian in :func:`out_flow_constraint`. For a given :math:`i`, this function returns: .. math:: d_{i}^{out}(d_{i}^{out} - 2)\mathbb{I} - 2(d_{i}^{out}-1)\sum_{j,(i,j)\in E}\hat{Z}_{ij} + ( \sum_{j,(i,j)\in E}\hat{Z}_{ij} )^{2} Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges node: a fixed node Returns: qml.Hamiltonian: The inner part of the out-flow constraint Hamiltonian. """ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")coeffs=[]ops=[]is_rx=isinstance(graph,rx.PyDiGraph)# In RX each node is assigned to an integer index starting from 0;# thus, we use the following lambda function to get node-values.get_nvalues=lambdaT:(graph.nodes().index(T[0]),graph.nodes().index(T[1]))ifis_rxelseTedges_to_qubits=edges_to_wires(graph)out_edges=graph.out_edges(node)d=len(out_edges)# To ensure the out_edges method in both RX and NX returns# the list of edges in the same order, we sort results.ifis_rx:out_edges=sorted(out_edges)foredgeinout_edges:iflen(edge)>2:edge=tuple(edge[:2])wire=(edges_to_qubits[get_nvalues(edge)],)coeffs.append(1)ops.append(qml.Z(wire))coeffs,ops=_square_hamiltonian_terms(coeffs,ops)foredgeinout_edges:iflen(edge)>2:edge=tuple(edge[:2])wire=(edges_to_qubits[get_nvalues(edge)],)coeffs.append(-2*(d-1))ops.append(qml.Z(wire))coeffs.append(d*(d-2))ops.append(qml.Identity(0))H=qml.Hamiltonian(coeffs,ops)H.simplify()# store the valuable information that all observables are in one commuting groupH.grouping_indices=[list(range(len(H.ops)))]returnHdef_inner_net_flow_constraint_hamiltonian(graph:Union[nx.DiGraph,rx.PyDiGraph],node:int)->qml.operation.Operator:r"""Calculates the squared inner portion of the Hamiltonian in :func:`net_flow_constraint`. For a given :math:`i`, this function returns: .. math:: \left((d_{i}^{\rm out} - d_{i}^{\rm in})\mathbb{I} - \sum_{j, (i, j) \in E} Z_{ij} + \sum_{j, (j, i) \in E} Z_{ji} \right)^{2}. Args: graph (nx.DiGraph or rx.PyDiGraph): the directed graph specifying possible edges node: a fixed node Returns: qml.Hamiltonian: The inner part of the net-flow constraint Hamiltonian. """ifnotisinstance(graph,(nx.DiGraph,rx.PyDiGraph)):raiseValueError(f"Input graph must be a nx.DiGraph or rx.PyDiGraph, got {type(graph).__name__}")edges_to_qubits=edges_to_wires(graph)coeffs=[]ops=[]is_rx=isinstance(graph,rx.PyDiGraph)out_edges=graph.out_edges(node)in_edges=graph.in_edges(node)# To ensure out_edges and in_edges methods in both RX and NX return# the lists of edges in the same order, we sort results.ifis_rx:out_edges=sorted(out_edges)in_edges=sorted(in_edges)# In RX each node is assigned to an integer index starting from 0;# thus, we use the following lambda function to get node-values.get_nvalues=lambdaT:(graph.nodes().index(T[0]),graph.nodes().index(T[1]))ifis_rxelseTcoeffs.append(len(out_edges)-len(in_edges))ops.append(qml.Identity(0))foredgeinout_edges:iflen(edge)>2:edge=tuple(edge[:2])wires=(edges_to_qubits[get_nvalues(edge)],)coeffs.append(-1)ops.append(qml.Z(wires))foredgeinin_edges:iflen(edge)>2:edge=tuple(edge[:2])wires=(edges_to_qubits[get_nvalues(edge)],)coeffs.append(1)ops.append(qml.Z(wires))coeffs,ops=_square_hamiltonian_terms(coeffs,ops)H=qml.Hamiltonian(coeffs,ops)H=H.simplify()# store the valuable information that all observables are in one commuting groupH.grouping_indices=[list(range(len(H.ops)))]returnH