Source code for pennylane.qaoa.layers

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Methods that define cost and mixer layers for use in QAOA workflows.
"""
import pennylane as qml


def _diagonal_terms(hamiltonian):
    r"""Checks if all terms in a Hamiltonian are products of diagonal Pauli gates
    (:class:`~.PauliZ` and :class:`~.Identity`).

    Args:
        hamiltonian (.Hamiltonian): The Hamiltonian being checked

    Returns:
        bool: ``True`` if all terms are products of diagonal Pauli gates, ``False`` otherwise
    """

    for op in hamiltonian.terms()[1]:
        if isinstance(op, qml.ops.Prod):
            obs = op.operands
        else:
            obs = [op]
        for j in obs:
            if j.name not in ("PauliZ", "Identity"):
                return False
    return True


[docs]def cost_layer(gamma, hamiltonian): r"""Applies the QAOA cost layer corresponding to a cost Hamiltonian. For the cost Hamiltonian :math:`H_C`, this is defined as the following unitary: .. math:: U_C \ = \ e^{-i \gamma H_C} where :math:`\gamma` is a variational parameter. Args: gamma (int or float): The variational parameter passed into the cost layer hamiltonian (.Hamiltonian): The cost Hamiltonian Raises: ValueError: if the terms of the supplied cost Hamiltonian are not exclusively products of diagonal Pauli gates .. details:: :title: Usage Details We first define a cost Hamiltonian: .. code-block:: python3 from pennylane import qaoa import pennylane as qml cost_h = qml.Hamiltonian([1, 1], [qml.Z(0), qml.Z(0) @ qml.Z(1)]) We can then pass it into ``qaoa.cost_layer``, within a quantum circuit: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit(gamma): for i in range(2): qml.Hadamard(wires=i) qaoa.cost_layer(gamma, cost_h) return [qml.expval(qml.Z(i)) for i in range(2)] which gives us a circuit of the form: >>> print(qml.draw(circuit)(0.5)) 0: ──H─╭ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z> 1: ──H─╰ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z> >>> print(qml.draw(circuit, level="device")(0.5)) 0: ──H──RZ(1.00)─╭RZZ(1.00)─┤ <Z> 1: ──H───────────╰RZZ(1.00)─┤ <Z> """ # NOTE: op is defined explicitely as validation inside ApproxTimeEvolution needs to be called before checking Hamiltonian op = qml.templates.ApproxTimeEvolution(hamiltonian, gamma, 1) if not _diagonal_terms(hamiltonian): raise ValueError("hamiltonian must be written only in terms of PauliZ and Identity gates") return op
[docs]def mixer_layer(alpha, hamiltonian): r"""Applies the QAOA mixer layer corresponding to a mixer Hamiltonian. For a mixer Hamiltonian :math:`H_M`, this is defined as the following unitary: .. math:: U_M \ = \ e^{-i \alpha H_M} where :math:`\alpha` is a variational parameter. Args: alpha (int or float): The variational parameter passed into the mixer layer hamiltonian (.Hamiltonian): The mixer Hamiltonian .. details:: :title: Usage Details We first define a mixer Hamiltonian: .. code-block:: python3 from pennylane import qaoa import pennylane as qml mixer_h = qml.Hamiltonian([1, 1], [qml.X(0), qml.X(0) @ qml.X(1)]) We can then pass it into ``qaoa.mixer_layer``, within a quantum circuit: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit(alpha): for i in range(2): qml.Hadamard(wires=i) qaoa.mixer_layer(alpha, mixer_h) return [qml.expval(qml.Z(i)) for i in range(2)] which gives us a circuit of the form: >>> print(qml.draw(circuit)(0.5)) 0: ──H─╭ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z> 1: ──H─╰ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z> >>> print(qml.draw(circuit, level="device")(0.5)) 0: ──H──RX(1.00)─╭RXX(1.00)─┤ <Z> 1: ──H───────────╰RXX(1.00)─┤ <Z> """ return qml.templates.ApproxTimeEvolution(hamiltonian, alpha, 1)