Source code for pennylane.qaoa.layers
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Methods that define cost and mixer layers for use in QAOA workflows.
"""
import pennylane as qml
def _diagonal_terms(hamiltonian):
r"""Checks if all terms in a Hamiltonian are products of diagonal Pauli gates
(:class:`~.PauliZ` and :class:`~.Identity`).
Args:
hamiltonian (.Hamiltonian): The Hamiltonian being checked
Returns:
bool: ``True`` if all terms are products of diagonal Pauli gates, ``False`` otherwise
"""
for op in hamiltonian.terms()[1]:
if isinstance(op, qml.ops.Prod):
obs = op.operands
else:
obs = [op]
for j in obs:
if j.name not in ("PauliZ", "Identity"):
return False
return True
[docs]def cost_layer(gamma, hamiltonian):
r"""Applies the QAOA cost layer corresponding to a cost Hamiltonian.
For the cost Hamiltonian :math:`H_C`, this is defined as the following unitary:
.. math:: U_C \ = \ e^{-i \gamma H_C}
where :math:`\gamma` is a variational parameter.
Args:
gamma (int or float): The variational parameter passed into the cost layer
hamiltonian (.Hamiltonian): The cost Hamiltonian
Raises:
ValueError: if the terms of the supplied cost Hamiltonian are not exclusively products of diagonal Pauli gates
.. details::
:title: Usage Details
We first define a cost Hamiltonian:
.. code-block:: python3
from pennylane import qaoa
import pennylane as qml
cost_h = qml.Hamiltonian([1, 1], [qml.Z(0), qml.Z(0) @ qml.Z(1)])
We can then pass it into ``qaoa.cost_layer``, within a quantum circuit:
.. code-block:: python
dev = qml.device('default.qubit', wires=2)
@qml.qnode(dev)
def circuit(gamma):
for i in range(2):
qml.Hadamard(wires=i)
qaoa.cost_layer(gamma, cost_h)
return [qml.expval(qml.Z(i)) for i in range(2)]
which gives us a circuit of the form:
>>> print(qml.draw(circuit)(0.5))
0: ──H─╭ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z>
1: ──H─╰ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z>
>>> print(qml.draw(circuit, level="device")(0.5))
0: ──H──RZ(1.00)─╭RZZ(1.00)─┤ <Z>
1: ──H───────────╰RZZ(1.00)─┤ <Z>
"""
# NOTE: op is defined explicitely as validation inside ApproxTimeEvolution needs to be called before checking Hamiltonian
op = qml.templates.ApproxTimeEvolution(hamiltonian, gamma, 1)
if not _diagonal_terms(hamiltonian):
raise ValueError("hamiltonian must be written only in terms of PauliZ and Identity gates")
return op
[docs]def mixer_layer(alpha, hamiltonian):
r"""Applies the QAOA mixer layer corresponding to a mixer Hamiltonian.
For a mixer Hamiltonian :math:`H_M`, this is defined as the following unitary:
.. math:: U_M \ = \ e^{-i \alpha H_M}
where :math:`\alpha` is a variational parameter.
Args:
alpha (int or float): The variational parameter passed into the mixer layer
hamiltonian (.Hamiltonian): The mixer Hamiltonian
.. details::
:title: Usage Details
We first define a mixer Hamiltonian:
.. code-block:: python3
from pennylane import qaoa
import pennylane as qml
mixer_h = qml.Hamiltonian([1, 1], [qml.X(0), qml.X(0) @ qml.X(1)])
We can then pass it into ``qaoa.mixer_layer``, within a quantum circuit:
.. code-block:: python
dev = qml.device('default.qubit', wires=2)
@qml.qnode(dev)
def circuit(alpha):
for i in range(2):
qml.Hadamard(wires=i)
qaoa.mixer_layer(alpha, mixer_h)
return [qml.expval(qml.Z(i)) for i in range(2)]
which gives us a circuit of the form:
>>> print(qml.draw(circuit)(0.5))
0: ──H─╭ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z>
1: ──H─╰ApproxTimeEvolution(1.00,1.00,0.50)─┤ <Z>
>>> print(qml.draw(circuit, level="device")(0.5))
0: ──H──RX(1.00)─╭RXX(1.00)─┤ <Z>
1: ──H───────────╰RXX(1.00)─┤ <Z>
"""
return qml.templates.ApproxTimeEvolution(hamiltonian, alpha, 1)
_modules/pennylane/qaoa/layers
Download Python script
Download Notebook
View on GitHub