Source code for pennylane.qchem.matrices
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the functions needed for computing matrices.
"""
# pylint: disable= too-many-branches
import itertools as it
import numpy as np
import pennylane as qml
from .integrals import (
_check_requires_grad,
attraction_integral,
kinetic_integral,
moment_integral,
overlap_integral,
repulsion_integral,
)
[docs]def mol_density_matrix(n_electron, c):
r"""Compute the molecular density matrix.
The density matrix :math:`P` is computed from the molecular orbital coefficients :math:`C` as
.. math::
P_{\mu \nu} = \sum_{i=1}^{N} C_{\mu i} C_{\nu i},
where :math:`N = N_{electrons} / 2` is the number of occupied orbitals. Note that the total
density matrix is the sum of the :math:`\alpha` and :math:`\beta` density
matrices, :math:`P = P^{\alpha} + P^{\beta}`.
Args:
n_electron (integer): number of electrons
c (array[array[float]]): molecular orbital coefficients
Returns:
array[array[float]]: density matrix
**Example**
>>> c = np.array([[-0.54828771, 1.21848441], [-0.54828771, -1.21848441]])
>>> n_electron = 2
>>> mol_density_matrix(n_electron, c)
array([[0.30061941, 0.30061941], [0.30061941, 0.30061941]])
"""
p = qml.math.dot(c[:, : n_electron // 2], qml.math.conjugate(c[:, : n_electron // 2]).T)
return p
[docs]def overlap_matrix(basis_functions):
r"""Return a function that computes the overlap matrix for a given set of basis functions.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
Returns:
function: function that computes the overlap matrix
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> overlap_matrix(mol.basis_set)(*args)
array([[1.0, 0.7965883009074122], [0.7965883009074122, 1.0]])
"""
def overlap(*args):
r"""Construct the overlap matrix for a given set of basis functions.
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the overlap matrix
"""
n = len(basis_functions)
matrix = qml.math.eye(n)
for (i, a), (j, b) in it.combinations(enumerate(basis_functions), r=2):
args_ab = []
if args:
args_ab.extend(
(
qml.math.array([arg[i], arg[j]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j]]
)
for arg in args
)
integral = overlap_integral(a, b, normalize=False)(*args_ab)
o = qml.math.zeros((n, n))
o[i, j] = o[j, i] = 1.0
matrix = matrix + integral * o
return matrix
return overlap
[docs]def moment_matrix(basis_functions, order, idx):
r"""Return a function that computes the multipole moment matrix for a set of basis functions.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
order (integer): exponent of the position component
idx (integer): index determining the dimension of the multipole moment integral
Returns:
function: function that computes the multipole moment matrix
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> order, idx = 1, 0
>>> moment_matrix(mol.basis_set, order, idx)(*args)
tensor([[0.0, 0.4627777], [0.4627777, 2.0]], requires_grad=True)
"""
def _moment_matrix(*args):
r"""Construct the multipole moment matrix for a given set of basis functions.
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the multipole moment matrix
"""
n = len(basis_functions)
matrix = qml.math.zeros((n, n))
for (i, a), (j, b) in it.combinations_with_replacement(enumerate(basis_functions), r=2):
args_ab = []
if args:
args_ab.extend(
(
qml.math.array([arg[i], arg[j]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j]]
)
for arg in args
)
integral = moment_integral(a, b, order, idx, normalize=False)(*args_ab)
o = qml.math.zeros((n, n))
o[i, j] = o[j, i] = 1.0
matrix = matrix + integral * o
return matrix
return _moment_matrix
[docs]def kinetic_matrix(basis_functions):
r"""Return a function that computes the kinetic matrix for a given set of basis functions.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
Returns:
function: function that computes the kinetic matrix
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> kinetic_matrix(mol.basis_set)(*args)
array([[0.76003189, 0.38325367], [0.38325367, 0.76003189]])
"""
def kinetic(*args):
r"""Construct the kinetic matrix for a given set of basis functions.
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the kinetic matrix
"""
n = len(basis_functions)
matrix = qml.math.zeros((n, n))
for (i, a), (j, b) in it.combinations_with_replacement(enumerate(basis_functions), r=2):
args_ab = []
if args:
args_ab.extend(
(
qml.math.array([arg[i], arg[j]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j]]
)
for arg in args
)
integral = kinetic_integral(a, b, normalize=False)(*args_ab)
o = qml.math.zeros((n, n))
o[i, j] = o[j, i] = 1.0
matrix = matrix + integral * o
return matrix
return kinetic
[docs]def attraction_matrix(basis_functions, charges, r):
r"""Return a function that computes the electron-nuclear attraction matrix for a given set of
basis functions.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
charges (list[int]): nuclear charges
r (array[float]): nuclear positions
Returns:
function: function that computes the electron-nuclear attraction matrix
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> attraction_matrix(mol.basis_set, mol.nuclear_charges, mol.coordinates)(*args)
array([[-2.03852057, -1.60241667], [-1.60241667, -2.03852057]])
"""
def attraction(*args):
r"""Construct the electron-nuclear attraction matrix for a given set of basis functions.
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the electron-nuclear attraction matrix
"""
n = len(basis_functions)
matrix = qml.math.zeros((n, n))
requires_grad = _check_requires_grad(r, False, args, 0)
for (i, a), (j, b) in it.combinations_with_replacement(enumerate(basis_functions), r=2):
integral = 0
if args:
args_ab = []
if requires_grad:
args_ab.extend(
(
qml.math.array([arg[i], arg[j]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j]]
)
for arg in args[1:]
)
else:
args_ab.extend(
(
qml.math.array([arg[i], arg[j]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j]]
)
for arg in args
)
for k, c in enumerate(r):
if _check_requires_grad(c, False, args, 0):
args_ab = [args[0][k]] + args_ab
integral = integral - charges[k] * attraction_integral(
c, a, b, normalize=False
)(*args_ab)
if _check_requires_grad(c, False, args, 0):
args_ab = args_ab[1:]
else:
for k, c in enumerate(r):
integral = (
integral - charges[k] * attraction_integral(c, a, b, normalize=False)()
)
o = qml.math.zeros((n, n))
o[i, j] = o[j, i] = 1.0
matrix = matrix + integral * o
return matrix
return attraction
[docs]def repulsion_tensor(basis_functions):
r"""Return a function that computes the electron repulsion tensor for a given set of basis
functions.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
Returns:
function: function that computes the electron repulsion tensor
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> repulsion_tensor(mol.basis_set)(*args)
array([[[[0.77460595, 0.56886144], [0.56886144, 0.65017747]],
[[0.56886144, 0.45590152], [0.45590152, 0.56886144]]],
[[[0.56886144, 0.45590152], [0.45590152, 0.56886144]],
[[0.65017747, 0.56886144],[0.56886144, 0.77460595]]]])
"""
def repulsion(*args):
r"""Construct the electron repulsion tensor for a given set of basis functions.
Permutational symmetries are taken from [D.F. Brailsford and G.G. Hall, International
Journal of Quantum Chemistry, 1971, 5, 657-668].
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the electron repulsion tensor
"""
n = len(basis_functions)
tensor = qml.math.zeros((n, n, n, n))
e_calc = qml.math.full((n, n, n, n), np.nan)
for (i, a), (j, b), (k, c), (l, d) in it.product(enumerate(basis_functions), repeat=4):
if qml.math.isnan(e_calc[(i, j, k, l)]):
args_abcd = []
if args:
args_abcd.extend(
(
qml.math.array([arg[i], arg[j], arg[k], arg[l]], like="jax")
if qml.math.get_deep_interface(arg) == "jax"
else [arg[i], arg[j], arg[k], arg[l]]
)
for arg in args
)
integral = repulsion_integral(a, b, c, d, normalize=False)(*args_abcd)
permutations = [
(i, j, k, l),
(k, l, i, j),
(j, i, l, k),
(l, k, j, i),
(j, i, k, l),
(l, k, i, j),
(i, j, l, k),
(k, l, j, i),
]
o = qml.math.zeros((n, n, n, n))
for perm in permutations:
o[perm] = 1.0
e_calc[perm] = 1.0
tensor = tensor + integral * o
return tensor
return repulsion
[docs]def core_matrix(basis_functions, charges, r):
r"""Return a function that computes the core matrix for a given set of basis functions.
The core matrix is computed as a sum of the kinetic and electron-nuclear attraction matrices.
Args:
basis_functions (list[~qchem.basis_set.BasisFunction]): basis functions
charges (list[int]): nuclear charges
r (array[float]): nuclear positions
Returns:
function: function that computes the core matrix
**Example**
>>> symbols = ['H', 'H']
>>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False)
>>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554],
>>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True)
>>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha)
>>> args = [alpha]
>>> core_matrix(mol.basis_set, mol.nuclear_charges, mol.coordinates)(*args)
array([[-1.27848869, -1.21916299], [-1.21916299, -1.27848869]])
"""
def core(*args):
r"""Construct the core matrix for a given set of basis functions.
Args:
*args (array[array[float]]): initial values of the differentiable parameters
Returns:
array[array[float]]: the core matrix
"""
if _check_requires_grad(r, False, args, 0):
t = kinetic_matrix(basis_functions)(*args[1:])
else:
t = kinetic_matrix(basis_functions)(*args)
a = attraction_matrix(basis_functions, charges, r)(*args)
return t + a
return core
_modules/pennylane/qchem/matrices
Download Python script
Download Notebook
View on GitHub