Source code for pennylane.qcut.utils
# Copyright 2022 Xanadu Quantum Technologies Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Support functions for cut_circuit and cut_circuit_mc.
"""
import uuid
import warnings
from collections.abc import Callable, Sequence
from typing import Any
import numpy as np
from networkx import MultiDiGraph, has_path, weakly_connected_components
import pennylane as qml
from pennylane.measurements import MeasurementProcess
from pennylane.operation import Operation
from pennylane.ops.meta import WireCut
from pennylane.queuing import WrappedObj
from .cutstrategy import CutStrategy
from .kahypar import kahypar_cut
class MeasureNode(Operation):
"""Placeholder node for measurement operations"""
num_wires = 1
grad_method = None
num_params = 0
def __init__(self, wires=None, id=None):
id = id or str(uuid.uuid4())
super().__init__(wires=wires, id=id)
def label(self, decimals=None, base_label=None, cache=None):
op_label = base_label or self.__class__.__name__
return op_label
class PrepareNode(Operation):
"""Placeholder node for state preparations"""
num_wires = 1
grad_method = None
num_params = 0
def __init__(self, wires=None, id=None):
id = id or str(uuid.uuid4())
super().__init__(wires=wires, id=id)
def label(self, decimals=None, base_label=None, cache=None):
op_label = base_label or self.__class__.__name__
return op_label
def _prep_zero_state(wire):
return [qml.Identity(wire)]
def _prep_one_state(wire):
return [qml.X(wire)]
def _prep_plus_state(wire):
return [qml.Hadamard(wire)]
def _prep_minus_state(wire):
return [qml.X(wire), qml.Hadamard(wire)]
def _prep_iplus_state(wire):
return [qml.Hadamard(wire), qml.S(wires=wire)]
def _prep_iminus_state(wire):
return [qml.X(wire), qml.Hadamard(wire), qml.S(wires=wire)]
[docs]def find_and_place_cuts(
graph: MultiDiGraph,
cut_method: Callable = kahypar_cut,
cut_strategy: CutStrategy = None,
replace_wire_cuts=False,
local_measurement=False,
**kwargs,
) -> MultiDiGraph:
"""Automatically finds and places optimal :class:`~.WireCut` nodes into a given tape-converted graph
using a customizable graph partitioning function. Preserves existing placed cuts.
Args:
graph (MultiDiGraph): The original (tape-converted) graph to be cut.
cut_method (Callable): A graph partitioning function that takes an input graph and returns
a list of edges to be cut based on a given set of constraints and objective. Defaults
to :func:`kahypar_cut` which requires KaHyPar to be installed using
``pip install kahypar`` for Linux and Mac users or visiting the
instructions `here <https://kahypar.org>`__ to compile from
source for Windows users.
cut_strategy (CutStrategy): Strategy for optimizing cutting parameters based on device
constraints. Defaults to ``None`` in which case ``kwargs`` must be fully specified
for passing to the ``cut_method``.
replace_wire_cuts (bool): Whether to replace :class:`~.WireCut` nodes with
:class:`~.MeasureNode` and :class:`~.PrepareNode` pairs. Defaults to ``False``.
local_measurement (bool): Whether to use the local-measurement circuit-cutting objective,
i.e. the maximum node-degree of the communication graph, for cut evaluation. Defaults
to ``False`` which assumes global measurement and uses the total number of cuts as the
cutting objective.
kwargs: Additional keyword arguments to be passed to the callable ``cut_method``.
Returns:
nx.MultiDiGraph: Copy of the input graph with :class:`~.WireCut` nodes inserted.
**Example**
Consider the following 4-wire circuit with a single CNOT gate connecting the top (wires
``[0, 1]``) and bottom (wires ``["a", "b"]``) halves of the circuit. Note there's a
:class:`~.WireCut` manually placed into the circuit already.
.. code-block:: python
ops = [
qml.RX(0.1, wires=0),
qml.RY(0.2, wires=1),
qml.RX(0.3, wires="a"),
qml.RY(0.4, wires="b"),
qml.CNOT(wires=[0, 1]),
qml.WireCut(wires=1),
qml.CNOT(wires=["a", "b"]),
qml.CNOT(wires=[1, "a"]),
qml.CNOT(wires=[0, 1]),
qml.CNOT(wires=["a", "b"]),
qml.RX(0.5, wires="a"),
qml.RY(0.6, wires="b"),
]
measurements = [qml.expval(qml.X(0) @ qml.Y("a") @ qml.Z("b"))]
tape = qml.tape.QuantumTape(ops, measurements)
>>> print(qml.drawer.tape_text(tape, decimals=1))
0: ──RX(0.1)─╭●────────╭●──────────┤ ╭<X@Y@Z>
1: ──RY(0.2)─╰X──//─╭●─╰X──────────┤ │
a: ──RX(0.3)─╭●─────╰X─╭●──RX(0.5)─┤ ├<X@Y@Z>
b: ──RY(0.4)─╰X────────╰X──RY(0.6)─┤ ╰<X@Y@Z>
Since the existing :class:`~.WireCut` doesn't sufficiently fragment the circuit, we can find the
remaining cuts using the default KaHyPar partitioner:
>>> graph = qml.qcut.tape_to_graph(tape)
>>> cut_graph = qml.qcut.find_and_place_cuts(
... graph=graph,
... num_fragments=2,
... imbalance=0.5,
... )
Visualizing the newly-placed cut:
>>> print(qml.qcut.graph_to_tape(cut_graph).draw(decimals=1))
0: ──RX(0.1)─╭●────────────╭●───────┤ ╭<X@Y@Z>
1: ──RY(0.2)─╰X──//─╭●──//─╰X───────┤ │
a: ──RX(0.3)─╭●─────╰X─╭●───RX(0.5)─┤ ├<X@Y@Z>
b: ──RY(0.4)─╰X────────╰X───RY(0.6)─┤ ╰<X@Y@Z>
We can then proceed with the usual process of replacing :class:`~.WireCut` nodes with
pairs of :class:`~.MeasureNode` and :class:`~.PrepareNode`, and then break the graph
into fragments. Or, alternatively, we can directly get such processed graph by passing
``replace_wire_cuts=True``:
>>> cut_graph = qml.qcut.find_and_place_cuts(
... graph=graph,
... num_fragments=2,
... imbalance=0.5,
... replace_wire_cuts=True,
... )
>>> frags, comm_graph = qml.qcut.fragment_graph(cut_graph)
>>> for t in frags:
... print(qml.qcut.graph_to_tape(t).draw())
.. code-block::
0: ──RX(0.1)──────╭●───────────────╭●──┤ ⟨X⟩
1: ──RY(0.2)──────╰X──MeasureNode──│───┤
2: ──PrepareNode───────────────────╰X──┤
a: ──RX(0.3)──────╭●──╭X──╭●────────────RX(0.5)──╭┤ ⟨Y ⊗ Z⟩
b: ──RY(0.4)──────╰X──│───╰X────────────RY(0.6)──╰┤ ⟨Y ⊗ Z⟩
1: ──PrepareNode──────╰●───MeasureNode────────────┤
Alternatively, if all we want to do is to find the optimal way to fit a circuit onto a smaller
device, a :class:`~.CutStrategy` can be used to populate the necessary explorations of cutting
parameters. As an extreme example, if the only device at our disposal is a 2-qubit device, a
simple cut strategy is to simply specify the the ``max_free_wires`` argument (or equivalently
directly passing a :class:`pennylane.devices.Device` to the ``device`` argument):
>>> cut_strategy = qml.qcut.CutStrategy(max_free_wires=2)
>>> cut_strategy.get_cut_kwargs(graph)
[{'num_fragments': 2, 'imbalance': 0.2857142857142858},
{'num_fragments': 3, 'imbalance': 0.2857142857142858},
{'num_fragments': 4, 'imbalance': 0.2857142857142858},
{'num_fragments': 5, 'imbalance': 0.2857142857142858},
{'num_fragments': 6, 'imbalance': 0.2857142857142858},
{'num_fragments': 7, 'imbalance': 0.2857142857142858},
{'num_fragments': 8, 'imbalance': 0.2857142857142858},
{'num_fragments': 9, 'imbalance': 0.2857142857142858},
{'num_fragments': 10, 'imbalance': 0.2857142857142858},
{'num_fragments': 11, 'imbalance': 0.2857142857142858},
{'num_fragments': 12, 'imbalance': 0.2857142857142858},
{'num_fragments': 13, 'imbalance': 0.0},
{'num_fragments': 14, 'imbalance': 0.0}]
The printed list above shows all the possible cutting configurations one can attempt to perform
in order to search for the optimal cut. This is done by directly passing a
:class:`~.CutStrategy` to :func:`~.find_and_place_cuts`:
>>> cut_graph = qml.qcut.find_and_place_cuts(
graph=graph,
cut_strategy=cut_strategy,
)
>>> print(qml.qcut.graph_to_tape(cut_graph).draw())
0: ──RX──//─╭●──//────────╭●──//────────┤ ╭<X@Y@Z>
1: ──RY──//─╰X──//─╭●──//─╰X────────────┤ │
a: ──RX──//─╭●──//─╰X──//─╭●──//──RX─//─┤ ├<X@Y@Z>
b: ──RY──//─╰X──//────────╰X──//──RY────┤ ╰<X@Y@Z>
As one can tell, quite a few cuts have to be made in order to execute the circuit on solely
2-qubit devices. To verify, let's print the fragments:
>>> qml.qcut.replace_wire_cut_nodes(cut_graph)
>>> frags, comm_graph = qml.qcut.fragment_graph(cut_graph)
>>> for t in frags:
... print(qml.qcut.graph_to_tape(t).draw())
.. code-block::
0: ──RX──MeasureNode─┤
1: ──RY──MeasureNode─┤
a: ──RX──MeasureNode─┤
b: ──RY──MeasureNode─┤
0: ──PrepareNode─╭●──MeasureNode─┤
1: ──PrepareNode─╰X──MeasureNode─┤
a: ──PrepareNode─╭●──MeasureNode─┤
b: ──PrepareNode─╰X──MeasureNode─┤
1: ──PrepareNode─╭●──MeasureNode─┤
a: ──PrepareNode─╰X──MeasureNode─┤
0: ──PrepareNode─╭●──MeasureNode─┤
1: ──PrepareNode─╰X──────────────┤
b: ──PrepareNode─╭X──MeasureNode─┤
a: ──PrepareNode─╰●──MeasureNode─┤
a: ──PrepareNode──RX──MeasureNode─┤
b: ──PrepareNode──RY─┤ <Z>
0: ──PrepareNode─┤ <X>
a: ──PrepareNode─┤ <Y>
"""
cut_graph = _remove_existing_cuts(graph)
if isinstance(cut_strategy, CutStrategy):
cut_kwargs_probed = cut_strategy.get_cut_kwargs(cut_graph)
# Need to reseed if a seed is passed:
seed = kwargs.pop("seed", None)
seeds = np.random.default_rng(seed).choice(2**15, cut_strategy.trials_per_probe).tolist()
cut_edges_probed = {
(cut_kwargs["num_fragments"], trial_id): cut_method(
cut_graph,
**{
**cut_kwargs,
**kwargs,
"seed": seed,
}, # kwargs has higher precedence for colliding keys
)
for cut_kwargs in cut_kwargs_probed
for trial_id, seed in zip(range(cut_strategy.trials_per_probe), seeds)
}
valid_cut_edges = {}
for (num_partitions, _), cut_edges in cut_edges_probed.items():
# The easiest way to tell if a cut is valid is to just do the fragment graph.
cut_graph = place_wire_cuts(graph=graph, cut_edges=cut_edges)
num_cuts = sum(isinstance(n.obj, WireCut) for n in cut_graph.nodes)
replace_wire_cut_nodes(cut_graph)
frags, comm = fragment_graph(cut_graph)
max_frag_degree = max(dict(comm.degree()).values())
if _is_valid_cut(
fragments=frags,
num_cuts=num_cuts,
max_frag_degree=max_frag_degree,
num_fragments_requested=num_partitions,
cut_candidates=valid_cut_edges,
max_free_wires=cut_strategy.max_free_wires,
):
key = (len(frags), max_frag_degree)
valid_cut_edges[key] = cut_edges
if len(valid_cut_edges) < 1:
raise ValueError(
"Unable to find a circuit cutting that satisfies all constraints. "
"Are the constraints too strict?"
)
cut_edges = _get_optim_cut(valid_cut_edges, local_measurement=local_measurement)
else:
cut_edges = cut_method(cut_graph, **kwargs)
cut_graph = place_wire_cuts(graph=graph, cut_edges=cut_edges)
if replace_wire_cuts:
replace_wire_cut_nodes(cut_graph)
return cut_graph
def replace_wire_cut_node(node: WireCut, graph: MultiDiGraph):
"""
Replace a :class:`~.WireCut` node in the graph with a :class:`~.MeasureNode`
and :class:`~.PrepareNode`.
.. note::
This function is designed for use as part of the circuit cutting workflow.
Check out the :func:`qml.cut_circuit() <pennylane.cut_circuit>` transform for more details.
Args:
node (WireCut): the :class:`~.WireCut` node to be replaced with a :class:`~.MeasureNode`
and :class:`~.PrepareNode`
graph (nx.MultiDiGraph): the graph containing the node to be replaced
**Example**
Consider the following circuit with a manually-placed wire cut:
.. code-block:: python
wire_cut = qml.WireCut(wires=0)
ops = [
qml.RX(0.4, wires=0),
wire_cut,
qml.RY(0.5, wires=0),
]
measurements = [qml.expval(qml.Z(0))]
tape = qml.tape.QuantumTape(ops, measurements)
We can find the circuit graph and remove the wire cut node using:
>>> graph = qml.qcut.tape_to_graph(tape)
>>> qml.qcut.replace_wire_cut_node(wire_cut, graph)
"""
node_obj = WrappedObj(node)
predecessors = graph.pred[node_obj]
successors = graph.succ[node_obj]
predecessor_on_wire = {}
for op, data in predecessors.items():
for d in data.values():
wire = d["wire"]
predecessor_on_wire[wire] = op
successor_on_wire = {}
for op, data in successors.items():
for d in data.values():
wire = d["wire"]
successor_on_wire[wire] = op
order = graph.nodes[node_obj]["order"]
graph.remove_node(node_obj)
for wire in node.wires:
predecessor = predecessor_on_wire.get(wire, None)
successor = successor_on_wire.get(wire, None)
meas = MeasureNode(wires=wire)
prep = PrepareNode(wires=wire)
# We are introducing a degeneracy in the order of the measure and prepare nodes
# here but the order can be inferred as MeasureNode always precedes
# the corresponding PrepareNode
meas_node = WrappedObj(meas)
prep_node = WrappedObj(prep)
graph.add_node(meas_node, order=order)
graph.add_node(prep_node, order=order)
graph.add_edge(meas_node, prep_node, wire=wire)
if predecessor is not None:
graph.add_edge(predecessor, meas_node, wire=wire)
if successor is not None:
graph.add_edge(prep_node, successor, wire=wire)
[docs]def replace_wire_cut_nodes(graph: MultiDiGraph):
"""
Replace each :class:`~.WireCut` node in the graph with a
:class:`~.MeasureNode` and :class:`~.PrepareNode`.
.. note::
This function is designed for use as part of the circuit cutting workflow.
Check out the :func:`qml.cut_circuit() <pennylane.cut_circuit>` transform for more details.
Args:
graph (nx.MultiDiGraph): The graph containing the :class:`~.WireCut` nodes
to be replaced
**Example**
Consider the following circuit with manually-placed wire cuts:
.. code-block:: python
wire_cut_0 = qml.WireCut(wires=0)
wire_cut_1 = qml.WireCut(wires=1)
multi_wire_cut = qml.WireCut(wires=[0, 1])
ops = [
qml.RX(0.4, wires=0),
wire_cut_0,
qml.RY(0.5, wires=0),
wire_cut_1,
qml.CNOT(wires=[0, 1]),
multi_wire_cut,
qml.RZ(0.6, wires=1),
]
measurements = [qml.expval(qml.Z(0))]
tape = qml.tape.QuantumTape(ops, measurements)
We can find the circuit graph and remove all the wire cut nodes using:
>>> graph = qml.qcut.tape_to_graph(tape)
>>> qml.qcut.replace_wire_cut_nodes(graph)
"""
for op in list(graph.nodes):
if isinstance(op.obj, WireCut):
replace_wire_cut_node(op.obj, graph)
[docs]def place_wire_cuts(
graph: MultiDiGraph, cut_edges: Sequence[tuple[Operation, Operation, Any]]
) -> MultiDiGraph:
"""Inserts a :class:`~.WireCut` node for each provided cut edge into a circuit graph.
Args:
graph (nx.MultiDiGraph): The original (tape-converted) graph to be cut.
cut_edges (Sequence[Tuple[Operation, Operation, Any]]): List of ``MultiDiGraph`` edges
to be replaced with a :class:`~.WireCut` node. Each 3-tuple represents the source node, the
target node, and the wire key of the (multi)edge.
Returns:
MultiDiGraph: Copy of the input graph with :class:`~.WireCut` nodes inserted.
**Example**
Consider the following 2-wire circuit with one CNOT gate connecting the wires:
.. code-block:: python
ops = [
qml.RX(0.432, wires=0),
qml.RY(0.543, wires="a"),
qml.CNOT(wires=[0, "a"]),
]
measurements = [qml.expval(qml.Z(0))]
tape = qml.tape.QuantumTape(ops, measurements)
>>> print(qml.drawer.tape_text(tape, decimals=3))
0: ──RX(0.432)─╭●─┤ <Z>
a: ──RY(0.543)─╰X─┤
If we know we want to place a :class:`~.WireCut` node between the nodes corresponding to the
``RY(0.543, wires=["a"])`` and ``CNOT(wires=[0, 'a'])`` operations after the tape is constructed,
we can first find the edge in the graph:
>>> graph = qml.qcut.tape_to_graph(tape)
>>> op0, op1 = tape.operations[1], tape.operations[2]
>>> cut_edges = [e for e in graph.edges if e[0].obj is op0 and e[1].obj is op1]
>>> cut_edges
[(Wrapped(RY(0.543, wires=['a'])), Wrapped(CNOT(wires=[0, 'a'])), 0)]
Then feed it to this function for placement:
>>> cut_graph = qml.qcut.place_wire_cuts(graph=graph, cut_edges=cut_edges)
>>> cut_graph
<networkx.classes.multidigraph.MultiDiGraph at 0x7f7251ac1220>
And visualize the cut by converting back to a tape:
>>> print(qml.qcut.graph_to_tape(cut_graph).draw(decimals=3))
0: ──RX(0.432)─────╭●─┤ <Z>
a: ──RY(0.543)──//─╰X─┤
"""
cut_graph = graph.copy()
for op0, op1, wire_key in cut_edges:
# Get info:
order = cut_graph.nodes[op0]["order"] + 1
wire = cut_graph.edges[(op0, op1, wire_key)]["wire"]
# Apply cut:
cut_graph.remove_edge(op0, op1, wire_key)
# Increment order for all subsequent gates:
for op, o in cut_graph.nodes(data="order"):
if o >= order:
cut_graph.nodes[op]["order"] += 1
# Add WireCut
wire_cut = WireCut(wires=wire)
wire_cut_node = WrappedObj(wire_cut)
cut_graph.add_node(wire_cut_node, order=order)
cut_graph.add_edge(op0, wire_cut_node, wire=wire)
cut_graph.add_edge(wire_cut_node, op1, wire=wire)
return cut_graph
def _remove_existing_cuts(graph: MultiDiGraph) -> MultiDiGraph:
"""Removes all existing, manually or automatically placed, cuts from a circuit graph, be it
``WireCut``s or ``MeasureNode``-``PrepareNode`` pairs.
Args:
graph (MultiDiGraph): The original (tape-converted) graph to be cut.
Returns:
(MultiDiGraph): Copy of the input graph with all its existing cuts removed.
"""
uncut_graph = graph.copy()
for node in list(graph.nodes):
if isinstance(node.obj, WireCut):
uncut_graph.remove_node(node)
elif isinstance(node.obj, MeasureNode):
for node1 in graph.neighbors(node):
if isinstance(node1.obj, PrepareNode):
uncut_graph.remove_node(node)
uncut_graph.remove_node(node1)
if len([n for n in uncut_graph.nodes if isinstance(n.obj, (MeasureNode, PrepareNode))]) > 0:
warnings.warn(
"The circuit contains `MeasureNode` or `PrepareNode` operations that are "
"not paired up correctly. Please check.",
UserWarning,
)
return uncut_graph
# pylint: disable=too-many-branches
[docs]def fragment_graph(graph: MultiDiGraph) -> tuple[tuple[MultiDiGraph], MultiDiGraph]:
"""
Fragments a graph into a collection of subgraphs as well as returning
the communication (`quotient <https://en.wikipedia.org/wiki/Quotient_graph>`__)
graph.
The input ``graph`` is fragmented by disconnecting each :class:`~.MeasureNode` and
:class:`~.PrepareNode` pair and finding the resultant disconnected subgraph fragments.
Each node of the communication graph represents a subgraph fragment and the edges
denote the flow of qubits between fragments due to the removed :class:`~.MeasureNode` and
:class:`~.PrepareNode` pairs.
.. note::
This operation is designed for use as part of the circuit cutting workflow.
Check out the :func:`qml.cut_circuit() <pennylane.cut_circuit>` transform for more details.
Args:
graph (nx.MultiDiGraph): directed multigraph containing measure and prepare
nodes at cut locations
Returns:
Tuple[Tuple[nx.MultiDiGraph], nx.MultiDiGraph]: the subgraphs of the cut graph
and the communication graph.
**Example**
Consider the following circuit with manually-placed wire cuts:
.. code-block:: python
wire_cut_0 = qml.WireCut(wires=0)
wire_cut_1 = qml.WireCut(wires=1)
multi_wire_cut = qml.WireCut(wires=[0, 1])
ops = [
qml.RX(0.4, wires=0),
wire_cut_0,
qml.RY(0.5, wires=0),
wire_cut_1,
qml.CNOT(wires=[0, 1]),
multi_wire_cut,
qml.RZ(0.6, wires=1),
]
measurements = [qml.expval(qml.Z(0))]
tape = qml.tape.QuantumTape(ops, measurements)
We can find the corresponding graph, remove all the wire cut nodes, and
find the subgraphs and communication graph by using:
>>> graph = qml.qcut.tape_to_graph(tape)
>>> qml.qcut.replace_wire_cut_nodes(graph)
>>> qml.qcut.fragment_graph(graph)
([<networkx.classes.multidigraph.MultiDiGraph object at 0x7fb3b2311940>,
<networkx.classes.multidigraph.MultiDiGraph object at 0x7fb3b2311c10>,
<networkx.classes.multidigraph.MultiDiGraph object at 0x7fb3b23e2820>,
<networkx.classes.multidigraph.MultiDiGraph object at 0x7fb3b23e27f0>],
<networkx.classes.multidigraph.MultiDiGraph object at 0x7fb3b23e26a0>)
"""
graph_copy = graph.copy()
cut_edges = []
measure_nodes = [n for n in graph.nodes if isinstance(n.obj, MeasurementProcess)]
for node1, node2, wire_key in graph.edges:
if isinstance(node1.obj, MeasureNode):
assert isinstance(node2.obj, PrepareNode)
cut_edges.append((node1, node2, wire_key))
graph_copy.remove_edge(node1, node2, key=wire_key)
subgraph_nodes = weakly_connected_components(graph_copy)
subgraphs = tuple(MultiDiGraph(graph_copy.subgraph(n)) for n in subgraph_nodes)
communication_graph = MultiDiGraph()
communication_graph.add_nodes_from(range(len(subgraphs)))
for node1, node2, _ in cut_edges:
for i, subgraph in enumerate(subgraphs):
if subgraph.has_node(node1):
start_fragment = i
if subgraph.has_node(node2):
end_fragment = i
if start_fragment != end_fragment:
communication_graph.add_edge(start_fragment, end_fragment, pair=(node1, node2))
else:
# The MeasureNode and PrepareNode pair live in the same fragment and did not result
# in a disconnection. We can therefore remove these nodes. Note that we do not need
# to worry about adding back an edge between the predecessor to node1 and the successor
# to node2 because our next step is to convert the fragment circuit graphs to tapes,
# a process that does not depend on edge connections in the subgraph.
subgraphs[start_fragment].remove_node(node1)
subgraphs[end_fragment].remove_node(node2)
terminal_indices = [i for i, s in enumerate(subgraphs) for n in measure_nodes if s.has_node(n)]
subgraphs_connected_to_measurements = []
subgraphs_indices_to_remove = []
prepare_nodes_removed = []
for i, s in enumerate(subgraphs):
if any(has_path(communication_graph, i, t) for t in terminal_indices):
subgraphs_connected_to_measurements.append(s)
else:
subgraphs_indices_to_remove.append(i)
prepare_nodes_removed.extend([n for n in s.nodes if isinstance(n.obj, PrepareNode)])
measure_nodes_to_remove = [
m for p in prepare_nodes_removed for m, p_, _ in cut_edges if p is p_
]
communication_graph.remove_nodes_from(subgraphs_indices_to_remove)
for m in measure_nodes_to_remove:
for s in subgraphs_connected_to_measurements:
if s.has_node(m):
s.remove_node(m)
return subgraphs_connected_to_measurements, communication_graph
def _is_valid_cut(
fragments,
num_cuts,
max_frag_degree,
num_fragments_requested,
cut_candidates,
max_free_wires,
):
"""Helper function for determining if a cut is a valid canditate."""
# pylint: disable=too-many-arguments
k = len(fragments)
key = (k, max_frag_degree)
correct_num_fragments = k <= num_fragments_requested
best_candidate_yet = (key not in cut_candidates) or (len(cut_candidates[key]) > num_cuts)
# pylint: disable=no-member
all_fragments_fit = all(
len(qml.qcut.graph_to_tape(f).wires) <= max_free_wires for j, f in enumerate(fragments)
)
return correct_num_fragments and best_candidate_yet and all_fragments_fit
def _get_optim_cut(valid_cut_edges, local_measurement=False):
"""Picks out the best cut from a dict of valid candidate cuts."""
if local_measurement:
min_max_node_degree = min(max_node_degree for _, max_node_degree in valid_cut_edges)
optim_cuts = {
k: cut_edges
for (k, max_node_degree), cut_edges in valid_cut_edges.items()
if (max_node_degree == min_max_node_degree)
}
else:
min_cuts = min(len(cut_edges) for cut_edges in valid_cut_edges.values())
optim_cuts = {
k: cut_edges
for (k, _), cut_edges in valid_cut_edges.items()
if (len(cut_edges) == min_cuts)
}
return optim_cuts[min(optim_cuts)] # choose the lowest num_fragments among best ones.
_modules/pennylane/qcut/utils
Download Python script
Download Notebook
View on GitHub