Source code for pennylane.shadows.transforms

# Copyright 2018-2022 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classical shadow transforms"""

import warnings
from functools import reduce, wraps
from itertools import product

import pennylane as qml
import pennylane.numpy as np
from pennylane.measurements import ClassicalShadowMP
from pennylane.tape import QuantumScript, QuantumTape


@qml.batch_transform
def _replace_obs(tape: QuantumTape, obs, *args, **kwargs):
    """
    Tape transform to replace the measurement processes with the given one
    """
    # check if the measurement process of the tape is qml.classical_shadow
    for m in tape.measurements:
        if not isinstance(m, ClassicalShadowMP):
            raise ValueError(
                f"Tape measurement must be ClassicalShadowMP, got {m.__class__.__name__!r}"
            )

    with qml.queuing.AnnotatedQueue() as q:
        # queue everything from the old tape except the measurement processes
        for op in tape.operations:
            qml.apply(op)

        # queue the new observable
        obs(*args, **kwargs)
    qscript = QuantumScript.from_queue(q, shots=tape.shots)

    def processing_fn(res):
        if qml.active_return():
            # no stacking necessary since there is only one measurement
            return res[0]

        return qml.math.squeeze(qml.math.stack(res))

    return [qscript], processing_fn


[docs]def shadow_expval(H, k=1): """Transform a QNode returning a classical shadow into one that returns the approximate expectation values in a differentiable manner. See :func:`~.pennylane.shadow_expval` for more usage details. Args: H (:class:`~.pennylane.Observable` or list[:class:`~.pennylane.Observable`]): Observables for which to compute the expectation values k (int): k (int): Number of equal parts to split the shadow's measurements to compute the median of means. ``k=1`` corresponds to simply taking the mean over all measurements. Returns: tensor-like[float]: 1-D tensor containing the expectation value estimates for each observable **Example** .. code-block:: python3 H = qml.PauliZ(0) @ qml.PauliZ(1) dev = qml.device("default.qubit", wires=2, shots=10000) @qml.shadows.shadow_expval(H, k=1) @qml.qnode(dev) def circuit(x): qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) qml.RX(x, wires=0) return qml.classical_shadow(wires=[0, 1]) >>> x = np.array(1.2) >>> circuit(x) tensor(0.3069, requires_grad=True) >>> qml.grad(circuit)(x) -0.9323999999999998 """ def decorator(qnode): return wraps(qnode)(_replace_obs(qnode, qml.shadow_expval, H, k=k)) return decorator
def _shadow_state_diffable(wires): """Differentiable version of the shadow state transform""" wires_list = wires if isinstance(wires[0], list) else [wires] if any(len(w) >= 8 for w in wires_list): warnings.warn( "Differentiable state reconstruction for more than 8 qubits is not recommended", UserWarning, ) # all pauli observables all_observables = [] for w in wires_list: observables = [] # Create all combinations of possible Pauli products P_i P_j P_k.... for w wires for obs in product( *[[qml.Identity, qml.PauliX, qml.PauliY, qml.PauliZ] for _ in range(len(w))] ): # Perform tensor product (((P_i @ P_j) @ P_k ) @ ....) observables.append(reduce(lambda a, b: a @ b, [ob(wire) for ob, wire in zip(obs, w)])) all_observables.extend(observables) def decorator(qnode): new_qnode = _replace_obs(qnode, qml.shadow_expval, all_observables) @wraps(qnode) def wrapper(*args, **kwargs): # pylint: disable=not-callable results = new_qnode(*args, **kwargs) # cast to complex results = qml.math.cast(results, np.complex64) states = [] start = 0 for w in wires_list: # reconstruct the state given the observables and the expectations of # those observables obs_matrices = qml.math.stack( [ qml.math.cast_like(qml.math.convert_like(qml.matrix(obs), results), results) for obs in all_observables[start : start + 4 ** len(w)] ] ) s = qml.math.einsum( "a,abc->bc", results[start : start + 4 ** len(w)], obs_matrices ) / 2 ** len(w) states.append(s) start += 4 ** len(w) return states if isinstance(wires[0], list) else states[0] return wrapper return decorator def _shadow_state_undiffable(wires): """Non-differentiable version of the shadow state transform""" wires_list = wires if isinstance(wires[0], list) else [wires] def decorator(qnode): @wraps(qnode) def wrapper(*args, **kwargs): bits, recipes = qnode(*args, **kwargs) shadow = qml.shadows.ClassicalShadow(bits, recipes) states = [qml.math.mean(shadow.global_snapshots(wires=w), 0) for w in wires_list] return states if isinstance(wires[0], list) else states[0] return wrapper return decorator
[docs]def shadow_state(wires, diffable=False): """Transform a QNode returning a classical shadow into one that returns the reconstructed state in a differentiable manner. Args: wires (list[int] or list[list[int]]): If a list of ints, this represents the wires over which to reconstruct the state. If a list of list of ints, a state is reconstructed for every element of the outer list, saving qfunc evaluations. diffable (bool): If True, reconstruct the state in a differentiable fashion, where the gradient of the reconstructed state approaches the gradient of the true state in expectation. This comes at a performance cost. Returns: list[tensor-like[complex]]: The reconstructed states **Example** .. code-block:: python3 dev = qml.device("default.qubit", wires=2, shots=10000) @qml.shadows.shadow_state(wires=[0, 1], diffable=True) @qml.qnode(dev) def circuit(x): qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) qml.RX(x, wires=0) return qml.classical_shadow(wires=[0, 1]) >>> x = np.array(1.2) >>> circuit(x) tensor([[ 0.33714998+0.j , 0.007875 +0.228825j , -0.010575 +0.22642499j, 0.33705002+0.01125j ], [ 0.007875 -0.228825j , 0.16104999+0.j , 0.17055 -0.0126j , 0.011025 -0.232575j ], [-0.010575 -0.22642499j, 0.17055 +0.0126j , 0.16704999+0.j , -0.006075 -0.225225j ], [ 0.33705002-0.01125j , 0.011025 +0.232575j , -0.006075 +0.225225j , 0.33475 +0.j ]], dtype=complex64, requires_grad=True) >>> qml.jacobian(lambda x: np.real(circuit(x)))(x) array([[-0.245025, -0.005325, 0.004275, -0.2358 ], [-0.005325, 0.235275, 0.2358 , -0.004275], [ 0.004275, 0.2358 , 0.244875, -0.002175], [-0.2358 , -0.004275, -0.002175, -0.235125]]) """ return _shadow_state_diffable(wires) if diffable else _shadow_state_undiffable(wires)