Source code for pennylane.templates.embeddings.angle
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Contains the ``AngleEmbedding`` template.
"""
# pylint: disable-msg=too-many-branches,too-many-arguments,protected-access
import pennylane as qml
from pennylane.operation import AnyWires, Operation
from pennylane.ops import RX, RY, RZ
ROT = {"X": RX, "Y": RY, "Z": RZ}
[docs]class AngleEmbedding(Operation):
r"""
Encodes :math:`N` features into the rotation angles of :math:`n` qubits, where :math:`N \leq n`.
The rotations can be chosen as either :class:`~pennylane.ops.RX`, :class:`~pennylane.ops.RY`
or :class:`~pennylane.ops.RZ` gates, as defined by the ``rotation`` parameter:
* ``rotation='X'`` uses the features as angles of RX rotations
* ``rotation='Y'`` uses the features as angles of RY rotations
* ``rotation='Z'`` uses the features as angles of RZ rotations
The length of ``features`` has to be smaller or equal to the number of qubits. If there are fewer entries in
``features`` than rotations, the circuit does not apply the remaining rotation gates.
Args:
features (tensor_like): input tensor of shape ``(N,)``, where N is the number of input features to embed,
with :math:`N\leq n`
wires (Any or Iterable[Any]): wires that the template acts on
rotation (str): type of rotations used
id (str): custom label given to an operator instance,
can be useful for some applications where the instance has to be identified.
Example:
Angle embedding encodes the features by using the specified rotation operation.
.. code-block:: python
dev = qml.device('default.qubit', wires=3)
@qml.qnode(dev)
def circuit(feature_vector):
qml.AngleEmbedding(features=feature_vector, wires=range(3), rotation='Z')
qml.Hadamard(0)
return qml.probs(wires=range(3))
X = [1,2,3]
Here, we have also used rotation angles :class:`RZ`. If not specified, :class:`RX` is used as default.
The resulting circuit is:
>>> print(qml.draw(circuit, level="device")(X))
0: ──RZ(1.00)──H─┤ ╭Probs
1: ──RZ(2.00)────┤ ├Probs
2: ──RZ(3.00)────┤ ╰Probs
"""
num_wires = AnyWires
grad_method = None
def _flatten(self):
hyperparameters = (("rotation", self._rotation),)
return self.data, (self.wires, hyperparameters)
def __repr__(self):
return f"AngleEmbedding({self.data[0]}, wires={self.wires.tolist()}, rotation={self._rotation})"
def __init__(self, features, wires, rotation="X", id=None):
if rotation not in ROT:
raise ValueError(f"Rotation option {rotation} not recognized.")
shape = qml.math.shape(features)[-1:]
n_features = shape[0]
if n_features > len(wires):
raise ValueError(
f"Features must be of length {len(wires)} or less; got length {n_features}."
)
self._rotation = rotation
self._hyperparameters = {"rotation": ROT[rotation]}
wires = wires[:n_features]
super().__init__(features, wires=wires, id=id)
@property
def num_params(self):
return 1
@property
def ndim_params(self):
return (1,)
[docs] @staticmethod
def compute_decomposition(features, wires, rotation): # pylint: disable=arguments-differ
r"""Representation of the operator as a product of other operators.
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.AngleEmbedding.decomposition`.
Args:
features (tensor_like): input tensor of dimension ``(len(wires),)``
wires (Any or Iterable[Any]): wires that the operator acts on
rotation (.Operator): rotation gate class
Returns:
list[.Operator]: decomposition of the operator
**Example**
>>> features = torch.tensor([1., 2.])
>>> qml.AngleEmbedding.compute_decomposition(features, wires=["a", "b"], rotation=qml.RX)
[RX(tensor(1.), wires=['a']),
RX(tensor(2.), wires=['b'])]
"""
batched = qml.math.ndim(features) > 1
# We will iterate over the first axis of `features` together with iterating over the wires.
# If the leading dimension is a batch dimension, exchange the wire and batching axes.
features = qml.math.T(features) if batched else features
return [rotation(features[i], wires=wires[i]) for i in range(len(wires))]
_modules/pennylane/templates/embeddings/angle
Download Python script
Download Notebook
View on GitHub