Source code for pennylane.templates.embeddings.basis
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Contains the BasisEmbedding template.
"""
# pylint: disable-msg=too-many-branches,too-many-arguments,protected-access
import pennylane as qml
import pennylane.numpy as np
from pennylane.operation import Operation, AnyWires
from pennylane.wires import Wires
[docs]class BasisEmbedding(Operation):
r"""Encodes :math:`n` binary features into a basis state of :math:`n` qubits.
For example, for ``features=np.array([0, 1, 0])`` or ``features=2`` (binary 10), the
quantum system will be prepared in state :math:`|010 \rangle`.
.. warning::
``BasisEmbedding`` calls a circuit whose architecture depends on the binary features.
The ``features`` argument is therefore not differentiable when using the template, and
gradients with respect to the argument cannot be computed by PennyLane.
Args:
features (tensor_like): binary input of shape ``(len(wires), )``
wires (Any or Iterable[Any]): wires that the template acts on
Example:
Basis embedding encodes the binary feature vector into a basis state.
.. code-block:: python
dev = qml.device('default.qubit', wires=3)
@qml.qnode(dev)
def circuit(feature_vector):
qml.BasisEmbedding(features=feature_vector, wires=range(3))
return qml.state()
X = [1,1,1]
The resulting circuit is:
>>> print(qml.draw(circuit, expansion_strategy="device")(X))
0: ──X─┤ State
1: ──X─┤ State
2: ──X─┤ State
And, the output state is:
>>> print(circuit(X))
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
Thus, ``[1,1,1]`` is mapped to :math:`|111 \rangle`.
"""
num_wires = AnyWires
grad_method = None
def _flatten(self):
basis_state = self.hyperparameters["basis_state"]
basis_state = tuple(basis_state) if isinstance(basis_state, list) else basis_state
return tuple(), (self.wires, basis_state)
@classmethod
def _unflatten(cls, _, metadata) -> "BasisEmbedding":
return cls(features=metadata[1], wires=metadata[0])
def __init__(self, features, wires, id=None):
if isinstance(features, list):
features = qml.math.stack(features)
tracing = qml.math.is_abstract(features)
if qml.math.shape(features) == ():
if not tracing and features >= 2 ** len(wires):
raise ValueError(
f"Features must be of length {len(wires)}, got features={features} which is >= {2 ** len(wires)}"
)
bin = 2 ** np.arange(len(wires))[::-1]
features = qml.math.where((features & bin) > 0, 1, 0)
wires = Wires(wires)
shape = qml.math.shape(features)
if len(shape) != 1:
raise ValueError(f"Features must be one-dimensional; got shape {shape}.")
n_features = shape[0]
if n_features != len(wires):
raise ValueError(
f"Features must be of length {len(wires)}; got length {n_features} (features={features})."
)
if not tracing:
features = list(qml.math.toarray(features))
if not set(features).issubset({0, 1}):
raise ValueError(f"Basis state must only consist of 0s and 1s; got {features}")
self._hyperparameters = {"basis_state": features}
super().__init__(wires=wires, id=id)
@property
def num_params(self):
return 0
[docs] @staticmethod
def compute_decomposition(wires, basis_state): # pylint: disable=arguments-differ
r"""Representation of the operator as a product of other operators.
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.BasisEmbedding.decomposition`.
Args:
features (tensor-like): binary input of shape ``(len(wires), )``
wires (Any or Iterable[Any]): wires that the operator acts on
Returns:
list[.Operator]: decomposition of the operator
**Example**
>>> features = torch.tensor([1, 0, 1])
>>> qml.BasisEmbedding.compute_decomposition(features, wires=["a", "b", "c"])
[PauliX(wires=['a']),
PauliX(wires=['c'])]
"""
if not qml.math.is_abstract(basis_state):
ops_list = []
for wire, bit in zip(wires, basis_state):
if bit == 1:
ops_list.append(qml.PauliX(wire))
return ops_list
ops_list = []
for wire, state in zip(wires, basis_state):
ops_list.append(qml.PhaseShift(state * np.pi / 2, wire))
ops_list.append(qml.RX(state * np.pi, wire))
ops_list.append(qml.PhaseShift(state * np.pi / 2, wire))
return ops_list
_modules/pennylane/templates/embeddings/basis
Download Python script
Download Notebook
View on GitHub