Source code for pennylane.templates.embeddings.squeezing
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Contains the SqueezingEmbedding template.
"""
# pylint: disable-msg=too-many-branches,too-many-arguments,protected-access
import pennylane as qml
from pennylane.operation import AnyWires, Operation
[docs]class SqueezingEmbedding(Operation):
r"""Encodes :math:`N` features into the squeezing amplitudes :math:`r \geq 0` or phases :math:`\phi \in [0, 2\pi)`
of :math:`M` modes, where :math:`N\leq M`.
The mathematical definition of the squeezing gate is given by the operator
.. math::
S(z) = \exp\left(\frac{r}{2}\left(e^{-i\phi}\a^2 -e^{i\phi}{\ad}^{2} \right) \right),
where :math:`\a` and :math:`\ad` are the bosonic creation and annihilation operators.
``features`` has to be an iterable of at most ``len(wires)`` floats. If there are fewer entries in
``features`` than wires, the circuit does not apply the remaining squeezing gates.
Args:
features (tensor_like): tensor of features
wires (Any or Iterable[Any]): wires that the template acts on
method (str): ``'phase'`` encodes the input into the phase of single-mode squeezing, while
``'amplitude'`` uses the amplitude
c (float): value of the phase of all squeezing gates if ``execution='amplitude'``, or the
amplitude of all squeezing gates if ``execution='phase'``
Raises:
ValueError: if inputs do not have the correct format
Example:
Depending on the ``method`` argument, the feature vector will be encoded in the phase or the amplitude.
The argument ``c`` will define the value of the other quantity.
The default values are :math:`0.1` for ``c`` and ``'amplitude'`` for ``method``.
.. code-block:: python
dev = qml.device('default.gaussian', wires=3)
@qml.qnode(dev)
def circuit(feature_vector):
qml.SqueezingEmbedding(features=feature_vector, wires=range(3))
qml.QuadraticPhase(0.1, wires=1)
return qml.expval(qml.NumberOperator(wires=1))
X = [1, 2, 3]
>>> print(circuit(X))
13.018280763205285
And, the resulting circuit is:
>>> print(qml.draw(circuit, show_matrices=False)(X))
0: ─╭SqueezingEmbedding(M0)──────────┤
1: ─├SqueezingEmbedding(M0)──P(0.10)─┤ <n>
2: ─╰SqueezingEmbedding(M0)──────────┤
Using different parameters:
.. code-block:: python
dev = qml.device('default.gaussian', wires=3)
@qml.qnode(dev)
def circuit(feature_vector):
qml.SqueezingEmbedding(features=feature_vector, wires=range(3), method='phase', c=0.5)
qml.QuadraticPhase(0.1, wires=1)
return qml.expval(qml.NumberOperator(wires=1))
X = [1, 2, 3]
>>> print(circuit(X))
0.22319028857312428
And, the resulting circuit is:
>>> print(qml.draw(circuit, show_matrices=False)(X))
0: ─╭SqueezingEmbedding(M0)──────────┤
1: ─├SqueezingEmbedding(M0)──P(0.10)─┤ <n>
2: ─╰SqueezingEmbedding(M0)──────────┤
"""
num_wires = AnyWires
grad_method = None
@classmethod
def _unflatten(cls, data, metadata) -> "SqueezingEmbedding":
new_op = cls.__new__(cls)
Operation.__init__(new_op, *data, wires=metadata[0])
return new_op
def __init__(self, features, wires, method="amplitude", c=0.1, id=None):
shape = qml.math.shape(features)
constants = [c] * shape[0]
constants = qml.math.convert_like(constants, features)
if len(shape) != 1:
raise ValueError(f"Features must be a one-dimensional tensor; got shape {shape}.")
n_features = shape[0]
if n_features != len(wires):
raise ValueError(f"Features must be of length {len(wires)}; got length {n_features}.")
if method == "amplitude":
pars = qml.math.stack([features, constants], axis=1)
elif method == "phase":
pars = qml.math.stack([constants, features], axis=1)
else:
raise ValueError(f"did not recognize method {method}")
super().__init__(pars, wires=wires, id=id)
@property
def num_params(self):
return 1
[docs] @staticmethod
def compute_decomposition(pars, wires): # pylint: disable=arguments-differ
r"""Representation of the operator as a product of other operators.
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.SqueezingEmbedding.decomposition`.
Args:
pars (tensor_like): parameters extracted from features and constant
wires (Any or Iterable[Any]): wires that the operator acts on
Returns:
list[.Operator]: decomposition of the operator
**Example**
>>> pars = torch.tensor([[1., 0.], [2., 0.]])
>>> qml.SqueezingEmbedding.compute_decomposition(pars, wires=["a", "b"])
[Squeezing(tensor(1.), tensor(0.), wires=['a']),
Squeezing(tensor(2.), tensor(0.), wires=['b'])]
"""
return [
qml.Squeezing(pars[i, 0], pars[i, 1], wires=wires[i : i + 1]) for i in range(len(wires))
]
_modules/pennylane/templates/embeddings/squeezing
Download Python script
Download Notebook
View on GitHub